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ABSTRACT

Bathymetric data sets used to compute the maximum change of gradient at the
foot of the continental shelf usually require pre-processing operations such as
resampling and numerical filtering. These operations may severely distort the
shape of original data.
This paper proposes an alternative method that avoids uncertainties in the
establishment of outer limits. The goal is to take a symbolic approach to the
problem that consists of fitting functions to two- or three-dimensional models
of the continental shelf. The application of symbolic functions, strictly
functionals, has advantages over the use of vectors of numerical data.
Functionals may be composed of a set of analytical functions that are at least
twice differentiable, and which resemble as closely as possible the shape of the
continental shelf in two- or three-dimensions. The correlation of functionals
with the continental shelf model may be precisely quantified by statistical
methods.
Once the functional parameters are established, analytical derivatives that take
into account the elected coordinate system may be calculated to determine the
maximum of the second derivative, i.e. the maximum change of gradient. This
solution is unique. Featuring comparable levels of variability between a given
series of data points and their derived functional, this procedure qualifies as a
"well posed method". Among the strengths of the method proposed is that it
requires neither data resampling nor filtering, thereby ensuring that bathymetric
observations remain unchanged during computation. The described algorithm
yields a unique solution to the problem of finding the maximum change of the
gradient at the foot of the continental slope.



Introduction

Several methods have been proposed for implementing UNCLOS Article 76. The article

establishes several methods for determining the outer limit of the juridical continental shelf of a

coastal state: Distance Formula, Sediment Thickness Formula, 2500 Mts. isobath plus 100nm.,

etc.

This paper is focused on the Distance Formula, which projects the foot of the slope, FOS,

of the continental shelf 60 nm. seaward. Its goal is to propose a method which:

ÿ�finds the FOS without uncertainties and

ÿ�evaluates quantitative measures of the error of every calculation step.

The algorithms presented here were first tested using Sandwell and Smith bathymetric

data for some continental shelves with different morphologies and finally tuned with bathymetric

observations from the Uruguayan continental shelf.

Motivation

UNCLOS Article 76 defines the Foot of The Continental Shelf as the maximum change
of gradient at its base.

Numerical treatment of bathymetric data by smoothing or filtering procedures, as the

Article 76 mentions, requires pre-processing operations which may distort the original data of

hydrographic campaigns.

Prior of filtering using Fourier Transforms data should be resampled. Election of wave

numbers for those filters must be carefully studied. Usually perturbations, which make unfeasible

numerical derivatives of the continental shelf, contain spectral components very similar to those

of the continental shelf itself. Trying to filter the perturbations may severely distort its shape.

Varying the wave number of the filters makes the maximum gradient variation point ambiguous.

Others methods of filtering were tested, like those based on Minkowsky Algebra for

erosion and dilatation of the continental shelf. The results were quite good, but the second goal:

evaluate quantitative measures of the error of every calculation step, was not fulfilled.



Proposed Method

Instead of a pure numerical treatment of the problem a symbolic one can be used.

Functionals can be fitted to the given numerical data and analytical derivatives could be found.

This method has several advantages: data needs neither to be resampled, nor filtered, it is

not altered during calculation, bathymetric values are those obtained during the hydrographic

campaign "as they are" and statistical values of errors can be precisely obtained.

The continental shelf can be described by a functionf of latitude and longitude over

depth. So if the function is differentiable, its directional derivative alongv (the direction of the

ship’s course) written in terms of the gradient∇f is:

It should be pointed that partial derivatives off(x) for obtaining its gradient can not be

evaluated, instead of it, givenf(x), the left side of equation (1) will be calculated.

Vectorv usually is assumed unitary. Ifα were a real positive number,αv is collinear tov.

If v is replaced byαv in (1), ∇f(x).αv = α[∇f(x). v], so the directional derivative doesn't depend

just on the pointx and the directionv. A unitary vectorv was used. What is actually done by the

choice ofα is to define a scale, in this case the scale is Nautical Miles.

Hydrographic ships tracks may be straight lines, Article 76 suggests that they should be

as perpendicular to isobaths as possible, in this case one of the members of the right side of

equation (1) “vanishes”, making calculations easier. In fact, using the chain rule, if the track of

the ship wereσ(p),

which is the directional derivative along the direction ofσ’(p). So it is not necessary that the

ship’s trackσ(p) be a straight line. It is enough to say thatσ(p) is known and thatσ’(p) is parallel

to ∇f(p).

The key of the problem is to findf(x), a function which resembles in two or three-

dimensions the shape of the continental shelf. As real numbers and a space of functions are both

Banach (normed and complete) vector spaces. Variational calculus enables all the considerations



above mentioned to be applied to functionals, i.e. a special class of functions where its arguments

are functions as well. In the 2D case, the functional should fit data of the form [distance – depth],

this data can be extracted from the actual one [latitude – longitude – depth] using the proper

spherical geometry, WGS-84 was used. Choosing smooth, infinitely differentiable, or at least

twice differentiable functions as functional arguments, the problem can be solved.

A set of sigmoidal and exponential forms was selected. The criteria for fitting this

functional to the available data was to minimize the value of:

The chi-square function of a set of valuesa (the values of all the parameters involved in

the functions used), equals the summatory overN points (the points of data) of the square of: the

difference of the bathymetric observationdi and the value of the functionf at point pi with

parametersa. σi is the standard deviation of the measuring device, so the chi-square value will be

less affected if this value is high. So, given a functional of a set of functions, the goal is to find

the parametersa which minimize the chi-square, thus maximizing the likelihood. For

accomplishing this the Levenberg-Marquardt algorithm was used. This method varies smoothly

between the steepest descent and the Hessian matrix-based algorithms over the error surface.

2-D Application

The first step for this calculation was to convert the original observations in the form

[latitude-longitude-depth] to the elected scale, (nautical miles in this case) resulting in [distance-

depth] according to WGS-84 spherical geometry. Distances are considered from the track

starting point.

The functional chosen, actually an “ansatz” was:

The parameters vectora = [dm, dp, Ds, do, A1, D1, d1, A2, D2, d2, A3, D3, d3, ...... ] which

minimizes the value of chi-square must be found. Once it is known, it can be used in the second

derivative of equation (4) for calculating the gradient variation.



The second directional derivative of equation (4) is:

In Figure 1 the bathymetric values, the fitted functional, the gradient variation and the

maximum gradient variation point are shown. The fitting error was quantified. The mean error is

–4.66 Mts., and the standard deviation is 16.49 Mts. This means thatp d( ) .±16 49 Mts.contains

68% of the bathymetric observations, and approximately 95% of them are within

p d( ) ± 33 Mts.

3-D Application

The methods used for 2-D applications can be extended to 3-D models. In this case,

resembling the continental shelf shape by a functional is more difficult. The difficulties lie in the

amount of parameters involved in that functional.

Figure 2 shows the Uruguayan continental shelf, it was built with nearly 25.000 observed

bathymetric values. The surface seems to be quite regular, so an adequate functional may be

found quite easily. In countries where it is not, the continental shelf could be considered

piecewise regular, “pieces” may be overlapped for obtaining a smooth FOS line.

Figure 1
(Bathymetric values shown are the minimum as to make the figure clear.)



If

Functionals like

where exponential forms for adjusting the position and dispersion of a three-dimensions sigmoid

were used successfully.

Statistical measures of the likelihood of the fitted function were not as good as in the two-

dimension case. Anyway, the results were quite good, FOS in this model is within 10% of the

one shown in Figure 1.

Calculus complexity grows as the square of the length of the parameter vector. For

rescuing the perturbations of the continental shelf in a three-dimensions model, more functions

should be considered.

Figure 2



Conclusions

Symbolic approaches to the problem of finding the foot of the slope of the continental

shelf of a coastal state have some advantages over numerical treatments.

Filtering or smoothing are not necessary. Thus avoiding the corruptness of the observed

bathymetric values. So, likelihood of the models used may be precisely established.

The foot of the slope point is calculated analytically, from the fitted model, and it is

unique.

The proposed method maximizes the likelihood of the model, calculating the optimum

parameters vector, with a least square error criterion. Robustness of the algorithm lies in the

possibility of establishing the fitting error, assuring that the parameters vector is optimum and it

does not correspond to a local minimum of the error surface.
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