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Abstract

The problem of determining turning points of median lines between states separated by sea is

considered. The turning point is defined as the point with equidistance lines to two basepoints

along the shoreline of one state and one basepoint in the adjacent state. For the sphere the

equidistance lines are parts of great circles, and the problem is solved by closed formulas. For the

ellipsoid the lines are defined along geodesics, and an iterative solution is presented.

1 Introduction

The median lineis a lineevery point of which is equidistant from nearest points on the baselines

of two states(IHB, 1993). This line is crucial for the maritime delimitation between opposite

coasts of two states separated by sea. In general, the median line runs smoothly as the “straight

line” equidistant between two distinctbaselines, each belonging to one of the states. However,

whenever points belonging to another baseline along one coastline get closer to the median line

than points on the previous baseline, the median line turns. As suggested by Carrera (1987) the

median line turning point can be defined by athree-point method,i.e. the turning point is the

point equidistant to three baseline points (belonging to different baselines). If the scale of the

baselines (between definedbasepoints)is small compared to the scale of the coastline separation,

the points along baselines can be approximated by the discrete basepoints. This approximation

will be used here to determine median line turning points. This problem was also treated by

Carrera (1987), Horemuz (1999), Horemuz et al.(1999) and Fan (2001). Carrera(1987) solved the

problem by classical formulas for solving the geodetic direct and indirect problems for geodesics

on the ellipsoid. Horemuz (1999) and Horemuz et al. (1999) solved the problem explicitly by
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rectangular co-ordinates for the spherical surface of reference, while an approximate method was

used for the ellipsoidal surface of reference.

In this paper the three-point turning point problem is solved explicitly for the sphere by spherical

co-ordinates. For an ellipsoidal surface of reference the problem is formulated by integral

equations along geodesics.

2 Solutions for the sphere

Proposition:Given the points ( )i i iP ,ϕ λ with latitudes iϕ and longitudes iλ ; i = 1,2,3, the three-

point problem has the solutions

Case I( )1 2 1 3andϕ ≠ ϕ ϕ ≠ ϕ :

23 1 1 13 2 2 12 3 3

23 1 1 13 2 2 12 3 3

S cos cos S cos cos S cos cos
tan

S cos sin S cos sin S cos sin

ϕ λ − ϕ λ + ϕ λλ =
− ϕ λ + ϕ λ − ϕ λ

(1a)

and

2 2 1 1

12

cos cos cos cos
tan

S

ϕ ∆λ − ϕ ∆λϕ = , (1b)

where

ij i jS sin sin= ϕ − ϕ ; i,j =1,2,3 and i i∆λ = λ − λ ; i =1,2.

Case II( )1 3 2ϕ = ϕ ≠ ϕ :

1 1 3 3

3 3 1 1

cos cos cos cos
tan

sin cos sin cos

λ ϕ − λ ϕλ =
λ ϕ − λ ϕ

(2a)

and
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2 2 1 1

12

cos cos cos cos
tan

S

ϕ ∆λ − ϕ ∆λϕ = (2b)

Case III( )1 2 3ϕ = ϕ ≠ ϕ :

1 1 2 2

2 2 1 1

cos cos cos cos
tan

sin cos sin cos

λ ϕ − λ ϕλ =
λ ϕ − λ ϕ

(3a)

and

3 3 1 1

13

cos cos cos cos
tan

S

ϕ ∆λ − ϕ ∆λϕ = (3b)

Proof: The point ( )P ,ϕ λ is defined by equal geocentric angels to the known points( )i i iP ,ϕ λ ; i

=1,2,3. From the spherical cosine theorem one obtains the following relation betweeniψ and the

spherical co-ordinates of the points P and Pi:

i i i icos sin sin cos cos cosψ = ϕ ϕ + ϕ ϕ ∆λ ; i =1,2,3. (4)

As ( )P ,ϕ λ is defined by 1 2 3ψ = ψ = ψ , it follows that

1 1 1 2 2 2

3 3 3

sin sin cos cos cos sin sin cos cos cos

sin sin cos cos cos

ϕ ϕ + ϕ ϕ ∆λ = ϕ ϕ + ϕ ϕ ∆λ =
= ϕ ϕ + ϕ ϕ ∆λ

(5)

or

1 1 1 2 2 2

3 3 3

tan sin cos cos tan sin cos cos

tan sin cos cos

ϕ ϕ + ϕ ∆λ = ϕ ϕ + ϕ ∆λ =
= ϕ ϕ + ϕ ∆λ

(6)

The first equation of formula (5) (including points P1 and P2) can be rewritten:

( )1 2 2 2 1 1tan sin sin cos cos cos cosϕ ϕ − ϕ = ϕ ∆λ − ϕ ∆λ (7a)

Same treatment of the second equation of formula (5) yields:

( )1 3 3 3 1 1tan sin sin cos cos cos cosϕ ϕ − ϕ = ϕ ∆λ − ϕ ∆λ (7b)
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Let us now consider the different cases of the proposition.

Case I ( )1 2 1 3andϕ ≠ ϕ ϕ ≠ ϕ : In this caseϕ is eliminated by dividing each member of Eq. (7a) by

(7b). The result is

12 1 2 2 2 1 1

13 1 3 3 3 1 1

S sin sin cos cos cos cos

S sin sin cos cos cos cos

ϕ − ϕ ϕ ∆λ − ϕ ∆λ= =
ϕ − ϕ ϕ ∆λ − ϕ ∆λ

(8)

Inserting into (8)

i i icos cos cos sin sin∆λ = λ λ + λ λ (9)

one easily arrives at the solution (1a) forλ , and (1b) is directly obtained from Eq.(7a).

Case II( )1 3 2ϕ = ϕ ≠ ϕ : Formula (9) inserted into Eq.(7b) with S13=0 yields

( ) ( )3 3 3 1 1 1cos cos cos sin sin cos cos cos sin sinϕ λ λ + λ λ = ϕ λ λ + λ λ

which can be rewritten on the form

( )3 3 1 1 1 1 3 3tan sin cos sin cos cos cos cos cosλ λ ϕ − λ ϕ = λ ϕ − λ ϕ

The last equation equals (2a). Moreover, the solution (2b) follows directly from Eq. (7a).

Case III ( )1 2 3ϕ = ϕ ≠ ϕ : Formula (9) inserted into Eq. (7a) with S12= 0 yields

2 2 2 1 1 1cos (cos cos sin sin ) cos (cos cos sin sin )ϕ λ λ + λ λ = ϕ λ λ + λ λ

which can be rewritten on the form (3a). The solution (3b) follows directly from (7b).

Q.E.D.
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The solution for Case I was also derived by Fan (2001).

Corollary:The azimuth iα at point ( )i i iP ,ϕ λ along the great circle towards( )P ,ϕ λ is given by

( )
( )

i
i

i i i

sin
tan

cos tan sin cos

λ − λ
α =

ϕ ϕ − ϕ λ − λ
; i = 1,2,3 (10)

The proof is given e.g. in Sjöberg (2001).

3 Solution for the ellipsoid

In the case of an ellipsoidal surface of reference it is convenient to introduce the reduced latitude

β related by the geodetic latitudeϕ by the relation

2tan 1 e tanβ = − ϕ

where
2 2a b

e
a

−= is the first excentricity of the ellipsoid defined by the semi-major and -minor

axes a and b. The distance (si) and the ellipsoidal longitude difference ( iL∆ ) from the point

( )i i iP ,Lβ to the wanted turning point ( )P , Lβ along the geodesic are given by

( ) ( ) ( )
i

i i i i is f , h d F , h F ,h
β

β

= β β = β − βÿ (12a)

and

( ) ( ) ( )
i

i i i i i iL L L g , h d G ,h G , h
β

β

∆ = − = β β = β − βÿ (13a)

where
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( )
2 2

i 2 2
i

1 e cos
f ,h a cos

cos h

− ββ = β
β −

(12b)

and

( )
2 2

i
i 2 2

i

h 1 e cos
g , h

cos cos h

− ββ = ±
β β −

(13b)

Here i maxh cos= β , where maxβ is the maximum (or minimum) latitude of the geodesic.

Alternatively, using the variable substitutions

2

sin
sin v

1 h

β=
−

(14a)

and

2

h
sin w tan

1 h
= β

−
(14b)

the integrals (12a) and (13a) can also be written (Klotz 1991 and 1993; Schmidt 1999 and 2000):

( ) ( ) ( )
i

v
* * *

i i i i i

v

s f v,h dv F v, h F v , h= = −ÿ (15a)

and

( ) ( ) ( )
i

w
* * *

i i i i i

w

L g w,h dw G w,h G w , h∆ = = −ÿ (16a)

where

( ) ( ){ }* 2 2 2
i if v,h a 1 e 1 1 h sin v= − − − (15b)

and

( ) ( )
2 2

* i
i 2 2 2

i i

e h
g w, h 1

h 1 h sin w
= ± −

+ −
(16b)

The three-point problem can now be defined by the equations
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1 2 3s s s= = (17a)

and

1 1 2 2 3 3L L L L L L L= + ∆ = + ∆ = + ∆ (17b)

where si and iL∆ are given by Eqs. (12a) and (13a) or by Eqs.(15a) and (16a). The longitude L

can be eliminated from (17b), yielding four independent equations with four unknowns (β , h1,

h2, h3). The system of equations can thus be written

1 2

1 3

1 1 2 2

1 1 3 3

s s

s s

L L L L

L L L L

=
=
+ ∆ = + ∆
+ ∆ = + ∆

(18)

Inserting formulas (12a) and (13a) and linearizing, one obtains the matrix equation

AX = Y (19a)

where

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

T
1 2 3

T
2 1 3 1 2 2 1 1 3 3 1 1

, h , h , h

s s , s s ,L L L L ,L L L L

= ∆β ∆ ∆ ∆

= − − − − + − − +

X

Y
(19b)

Here the bracket ( ) denotes an approximation to the quantity within the bracket, determined by

0β and 0
ih . The vector of unknownsX contains improvements to the approximate values0β , 0

1h ,

0
2h and 0

3h . The elements of the (4x4) design matrixA are presented in the Appendix. In order to

determine the elements ofY and A the integrals (12a) and (13a) or (15a) and (16a) must be

employed, e.g. by series expansions or direct numerical integrations (Klotz 1991 and 1993;

Schmidt 1999 and 2000). Starting values for0β , 0v and 0
ih are preferably given by the spherical

solutions of Section 2. As the equations are linearized, the solution should be iterated.
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4 Concluding remarks

The solution of the position of a median line turning point from the three-point problem was

derived explicitly for the sphere and as an iterative vector solution for the ellipsoid. Numerical

examples are left for a forthcoming paper.

A future challenge is to avoid the approximation by the three-point problem and to determine the

position of the turning point directly from all points along the baselines.
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Appendix

The elements of the design matrixA are as follows:

( ) ( )0 0 0 01 2
11 1 2

s s
A f ,h f ,h

� � � �∂ ∂= − = β − β� � � �∂β ∂β� � � �

( )
( )

( )0 0

1 1

* 0v0
101 1

12 1 2 20
1 1 v1

f v,hs f ah
A ,h cos d dv

h h cos v1 h

β

β

� � � �∂ ∂= = β β β =� �� �∂ ∂� � � � −
ÿ ÿ

( )
( )0

2

* 0v0
22 2

13 2 20
2 v2

f v, hs ah
A dv

h cos v1 h

� �∂ −= − =� �∂� � −
ÿ

14A 0=

( ) ( )0 0 0 031
21 1 3

ss
A f , h f , h

� � � �∂∂= − = β − β� � � �∂β ∂β� � � �

22 12A A=

23A 0=

( )
( )0

3

* 0v0
33 3

24 2 20
3 v3

f v,hs ah
A dv

h cos v1 h

� �∂ −= − =� �∂� � −
ÿ

( ) ( )0 0 0 01 2
31 1 2

L L
A g ,h g , h

� � � �∂∆ ∂∆= − = β − β� � � �∂β ∂β� � � �
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( )
( )0 0

1 1

* 0v0
11 1

32 2 20
1 1 v1

g v, hL g h
A d dv

h h cos v1 h

β

β

� �∂∆ ∂= = β =� �∂ ∂� � −
ÿ ÿ

( )
( )0

2

* 0v0
22 2

33 2 20
2 v2

g v,hL h
A dv

h cos v1 h

� �∂∆= − = −� �∂� � −
ÿ

34A 0=

( )
( )

( )
( )0 0

1 3

* 0 * 0v v00
1 33 31 1

41 2 22 20 0
1 3 v v1 3

g v, h g v, hL hL h
A dv dv

h h cos v cos v1 h 1 h

� �� � ∂∆∂∆= − = −� �� �∂ ∂� � � � − −
ÿ ÿ

42 32A A=

43A 0=

( )
( )0

3

* 0v0
33 3

44 2 20
3 v3

g v, hL h
A dv

h cos v1 h

� �∂∆= − = −� �∂� � −
ÿ


