

15th meeting of the DQWG

Using data quality for safe navigation

DQWG-15.6B

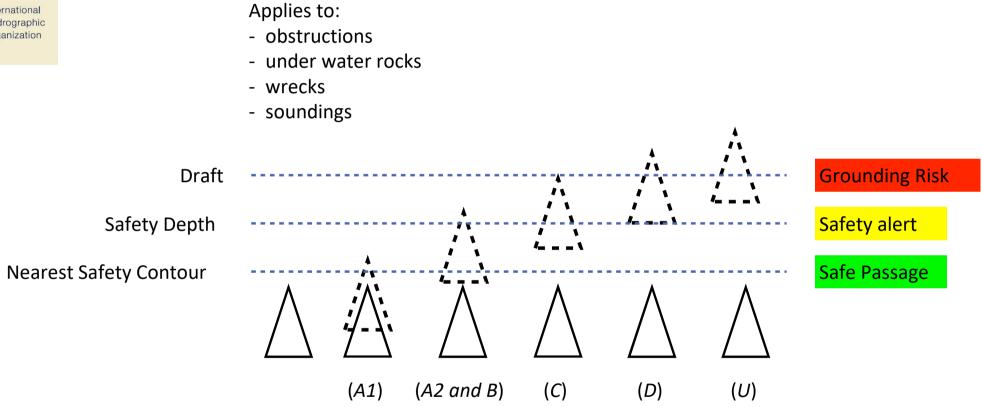
DQWG15, IHO Secretariat, Monaco, 4 – 7 February 2020

The primary objective of the IHO Data Quality Working Group is to develop appropriate methods of classifying and depicting the quality of digital hydrographic information (www.iho.int)

Data Quality Working Group existence:

- Data Quality Working Group was re-activated at 18th CHRIS meeting (2006)
- CHRIS-19 Committee agreed to add "presentation of data quality" to the DQWG work plan and the ToR to be amended accordingly (2007)
- HSSC-9 agreed on the continuity of the activities of the DQWG and approved the new ToRs (2017)

- HSSC11 tasked DQWG to continue the development of the conditional visualization methodology of quality of bathymetric data (May 2019)
- Quality of Bathymetric Data = M_QUAL/CATZOC (in S-57)
- S-57 ENC cells were provided by several DQWG members for testing
- Testdata was made available to S-100WG Vice-Chair
- First results were discussed at S-100 Test Strategy Meeting (Sept 2019)
- Portrayal is still the biggest issue
- This presentation is a proof of concept using existing software
- For symbology reason only, S-57 object RESARE is used
- Implementation to be decided by HSSC


- Conditional visualization is based on the principle that isolated features hazardous to navigation need to be highlighted on need-to-have basis
- The horizontal and vertical accuracy of these isolated features is taken into account
- If no horizontal accuracy (HORACC) of a single feature is available, it will assume to have the accuracy associated with the quality indicator of the area. Same for vertical accuracy (VERACC)
- The area quality indicator Category Zone of Confidence (CATZOC) has been in use for more than 20 years
- CATZOC is mandatory in existing S-57 ENCs

- New methodology should:
 - Be intuitive to the Mariner
 - Not create confusion or distraction to the Mariner
 - Only be shown when the Mariner needs it for decision making
 - Make use of existing symbology in ECDIS
 - Be easy to supply the underlying data by the Hydrographic Office
 - Be easy to understand by the Hydrographic Office
 - Be supportive to facilitate autonomous shipping
 - Also work if no portrayal at all is needed

IHO THE METHODOLOGY (VERTICALLY)

DQWG-15, IHO Secretariat, Monaco, 4 - 7 February 2020

THE METHODOLOGY (HORIZONTALLY)

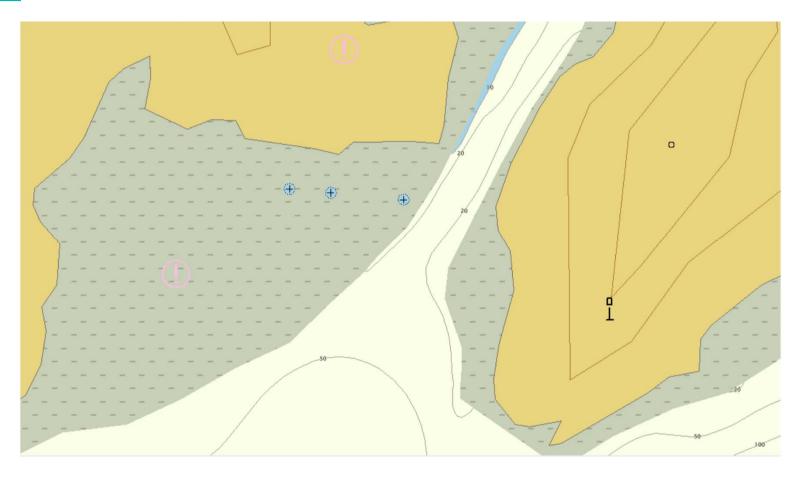
International Hydrographic Organization

Circle showing the area of the possible position of the isolated feature - CATZOC A2 = 20 meter - CATZOC B = 50 meter - CATZOC C and D = 500 meter (A2) (*B*) (*C* and *D*)

DQWG-15, IHO Secretariat, Monaco, 4 - 7 February 2020

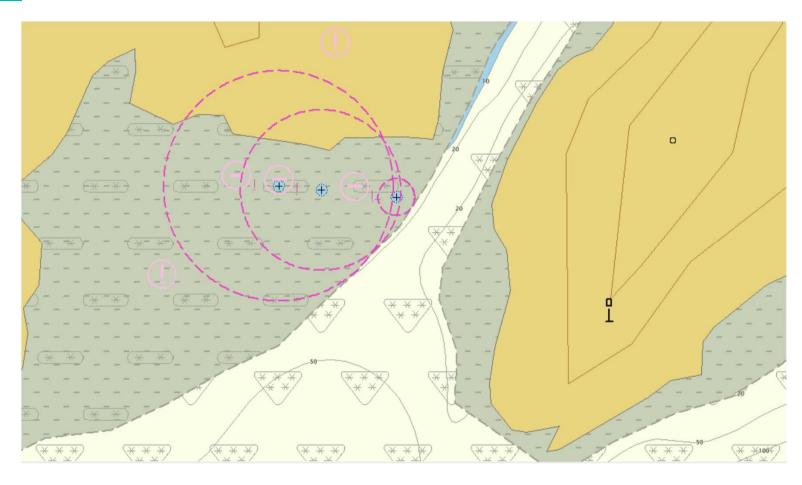
OPERATIONAL TEST

- Testcase using ENC data from Denmark
- Greenland area (60-30N, 46-30W)
- Intended Usage = 4
- Polar region
- Source data: old paper charts, recent Satellite Imagery
- Difficult to confirm or disprove historic data without sufficient recent surveys
- Cell contains areas of CATZOC = D, B and A2
- Cell contains 116 UWTROCs (107 unknown depth)

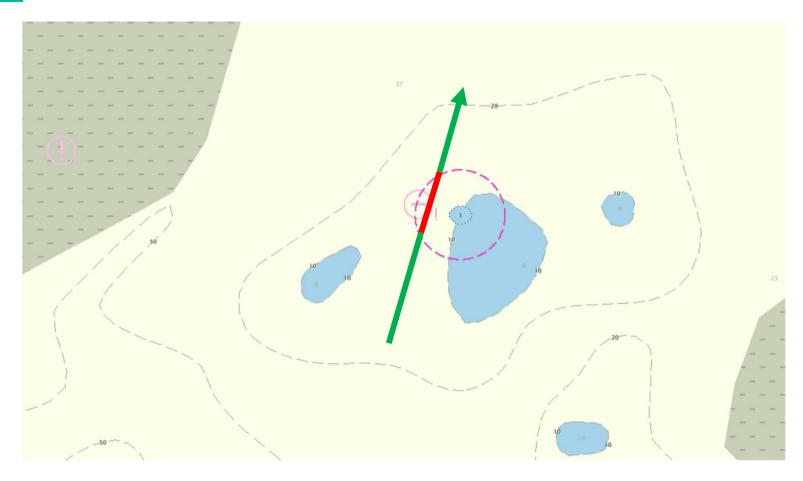


IHO HOW TO ESTABLISH THE CORRECT FEATURES?

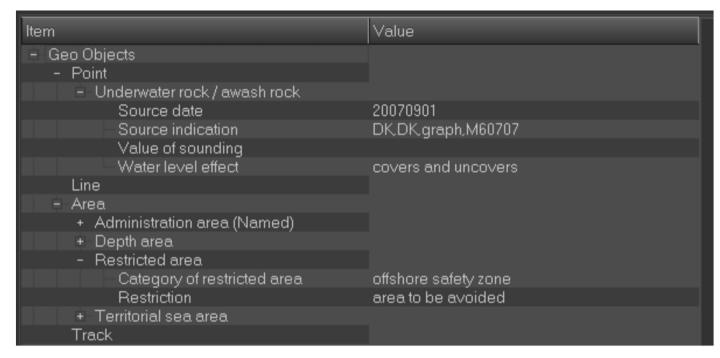
- Filter the areas of a specific CATZOC value (e.g. D)
- Select all UWTROC point objects inside the CATZOC D areas
- Copy these to a scratch layer
- Create Restricted Areas (SAA in S-101) around each single UWTROC
- Draw a circle until the edge of the CATZOC D area OR until the circle is 500m wide
- Assign attributes:
 - Category of restricted area = Offshore safety zone (not in S-101)
 - Restriction = Area to be avoided (not in S-101)


IHO CURRENT MARINERS VIEW

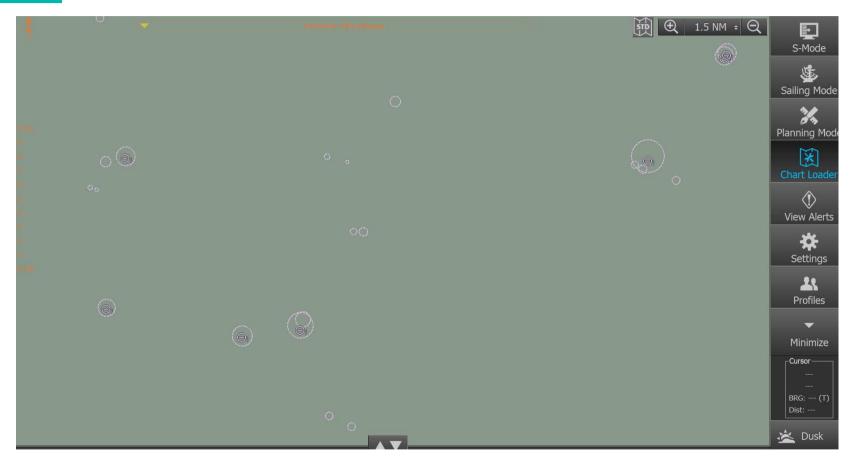
DQWG-15, IHO Secretariat, Monaco, 4 - 7 February 2020


S-101 ENC WITH ADDITIONAL SAFETY ALERT AREAS

DQWG-15, IHO Secretariat, Monaco, 4 - 7 February 2020


IHO VESSEL PASSING TOO CLOSE TO UNDERWATER ROCK

DQWG-15, IHO Secretariat, Monaco, 4 - 7 February 2020


SUCCESSFULLY LOADED INTO ECDIS

- Pick Report
- Shows the UWTROC
- Shows the RESARE

ECDIS SAFETY ALERT FEATURES @ 1.5 NM

DQWG-15, IHO Secretariat, Monaco, 4 - 7 February 2020

CONSIDERATIONS FOR S-101

- In S-101 the feature Safety Alert Area (SAA) is suggested
- Attribute depth value is needed to check against the safety depth of the Mariner
- The HO can decide which Safety Alert Area's should be included into the S-101 ENC
- Mariner enters a Safety Depth and minimal XTD into ECDIS
- When dangerous isolated objects (including their accuracy) are within the ships boundaries of Safety Depth and minimal XTD, alerts are triggered.
- ECDIS issues an alarm to attend the Mariner of the risk ahead
- More autonomous vessel may deviate to avoid the risk

IHO MAN-MACHINE INTERFACE

- Mariner is at all times in charge of the vessel
- Mariner requires to be in charge of the information presented to him for decision making
- Mariner requires an ON/OFF switch to manually activate and de-activate the Safety Alert Area features (voyage planning)
- Mariner can be supported in decision making by automatically activating the Safety Alert Area features when vessel comes too close to isolated hazardous objects dangerous to navigation (voyage monitoring)
- System is automatically de-activated when risk is no longer present
- Mariner has the ability to de-activate the Safety Alert Area Features

BENEFITS

- The HO decides which Areas need to be created to alert the Mariner.
- In **S-57**:
 - Portrayal of object RESARE is already implemented into S-57 and S-52
 - Usage of RESARE already triggers an alarm in ECDIS to the Mariner
 - S-52 Ed 4.0:
 - 10.5.10 Detection of Areas, for which Special Conditions Exist
- In S-101:
 - A similar mechanism can be created for Safety Alert Area's
 - Add **Tidal** information => Under Keel Clearance / risk avoidance system
 - long term tidal prediction + accuracy
 - short term tidal prediction + accuracy
 - current tidal observation + accuracy
 - tidal forecast + accuracy

- S-101 model needs an update: Safety Alert Area features
- ECDIS needs a user input: show Safety Alert Area (ON/OFF)
- ECDIS needs new Conditional Symbology Procedure (activate SAA)
- Include tidal information and its accuracy to improve safety

- Concept proven for Greenland situation, other Test Data to be tested
- Concept to be shared with other HSSC WGs/PTs
- Serious testing: showcase along US East coast (New York Miami)
- Test results to be discussed at next DQWG meeting (Feb 2020)
- If approved, paper to be delivered at HSSC12 (May 2020)

- Feedback on this concept is welcome
- IHO Data Quality Working Group
- Send email to: R.Broekman.01@mindef.nl