

S-100 – Part 15

Data Protection Scheme

DRAFT

S-63e2.0.0

Page intentionally left blank

Contents
TABLE OF CONTENTS

Preface		1
15-1		Scope	3
15-2		Normative References	3
15-3		General Description	3
15-4		Participants in the Protection Scheme	4
15-4.1	Scheme Administrator	4
15-4.2	Data Servers	4
15-4.3	Data Clients	5
15-4.4	Original Equipment Manufacturers	5
15-4.5	Participant Relationships	5
15-4.5.1	Domain Coordinator	5
15-5		Data compression	6
15-5.1	Overview	6
15-5.2	Compression Algorithm	6
15-5.3	Encoding	6
15-6		Data encryption	7
15-6.1	What Data is encrypted?	7
15-6.2	How is it encrypted?	7
15-6.2.1	Encryption Algorithm	7
15-6.2.2	AES examples	9
15-7		Data encryption and licensing	10
15-7.1	Introduction	10
15-7.2	Conversion of bit strings to integers	11
15-7.2.1	Converting bit strings to an integer	11
15-7.2.2	Converting an integer number to a bit string	11
15-7.2.3	Converting an unsigned integer number to a hexadecimal text representation	12
15-7.2.4	Converting a hexadecimal text representation to an unsigned integer number	13
15-7.3	The User Permit	13
15-7.3.1	Definition of user permit	13
15-7.3.2	M_KEY Format	14
15-7.4	The Data Permit	14
15-7.4.1	The Permit File (PERMIT.XML)	15
15-7.4.2	The Permit File - Header content	15
15-7.4.3	Product sections and Permit Records Fields	15
15-7.4.4	Definition of the Permit Record	16
15-7.4.5	An example permit.xml file	16
15-8		Data authentication	17
15-8.1	Introduction to Data Authentication and Integrity Checking	17
15-8.2	Data Protection Scheme setup, Data Server signup and authentication sequence	18
15-8.3	Data Formats and standards for digital signatures, keys and certificates	19
15-8.4	Creation of key material and certificate signing requests (signed Public Keys)	20
15-8.4.1	SA setup	20
15-8.4.2	Data Server setup	20
15-8.5	Example Public Key	21
15-8.6	Creation of digital signatures by a Data Server	22
15-8.7	Verifying Data Integrity and Digital Identity with an S-100 digital signature	22
15-9		Glossary of S-100 Data Protection Scheme and computing terms	23
Appendix 15-A Encryption Examples (informative)	25
15-A-1	Converting bit string to an integer number	25
15-A-2	Converting an integer number to a bit string	25
15-A-3	Converting an unsigned integer number to a hexadecimal text representation	26
15-A-4	Converting a hexadecimal text representation to an unsigned integer number	27
15-A-5	Details on the encryption algorithm	27
15-A-6	Examples on AES	29
15-A-7	Diagrams on HW_ID encryption	30
15-A-8	Diagrams on Data key encryption	31
15-A-9	Example of a user permit	32
15-A-10	Example of an encrypted data key	32
15-A-11	Example of a Data Permit	32
15-A-12	Example of HW_ID	32
15-A-13	Example of Permit File (XML)	32

1	INTRODUCTION	4
1.1	General Description	5
1.2	Participants in the Protection Scheme	5
1.2.1	Scheme Administrator	6
1.2.2	Data Servers	6
1.2.3	Data Clients	6
1.2.4	Original Equipment Manufacturers (OEM)	7
1.2.5	Participant Relationships	7
2	DATA COMPRESSION	9
2.1	Overview	9
2.2	Compression Algorithm	9
2.3	Encoding	9
3	DATA ENCRYPTION	10
3.1	What Data is encrypted?	10
3.2	How is it encrypted?	10
3.2.1	Encryption Algorithm	10
3.2.2	AES examples	12
4	DATA ENCRYPTION AND LICENSING	13
4.1	Introduction	13
4.2	Introduction – Conversion of bit strings to integers	14
4.2.1	Converting bit strings to an integers	14
4.2.2	Converting an integer number to a bit string	14
4.2.3	Converting an unsigned integer number to a hexadecimal text representation	15
4.2.4	Converting a hexadecimal text representation to an unsigned integer number	15
4.3	The User permit	16
4.3.1	Definition of User Permit	16
4.3.2	HW_ID Format	17
4.3.3	Check Sum (CRC) Format	17
4.3.4	M_ID Format	17
4.3.5	M_KEY Format	17
4.4	The Data Permit	18
4.4.1	The Permit File (PERMIT.XML)	18
4.4.2	The Permit File - Header content	19
4.4.3	Product sections and Permit Records Fields	19
4.4.4	Definition of the Permit record	19
4.4.5	An example permit.xml file.	20
5	DATA AUTHENTICATION	21
5.1	Introduction to Data Authentication and Integrity Checking	21
5.2	Data Formats for digital signatures, keys and certificates.	23
5.2.1	Creation of key material and certificate signing requests (signed public keys).	24
5.2.2	Example public key.	24
5.2.3	Creation of digital signatures by a data server.	25
5.2.4	Verifying Data Integrity and Digital Identity with an S-100 digital signature	26
5.3	References (update)	26
1	INTRODUCTION	7
1.1	General Description	7
1.2	Participants in the Protection Scheme	8
1.2.1	Scheme Administrator	8
1.2.2	Data Servers	8
1.2.3	Data Clients	9
1.2.4	Original Equipment Manufacturers (OEM)	9
1.2.5	Participant Relationships	9
2	DATA COMPRESSION	11
2.1	Overview	11
2.2	Compression Algorithm	11
2.3	Encoding	11
3	DATA ENCRYPTION	12
3.1	What Data is encrypted?	12
3.2	How is it encrypted?	12
3.2.1	Encryption Algorithm	12
3.2.2	AES examples	14
4	DATA ENCRYPTION AND LICENSING	15
4.1	Introduction	15
4.2	Introduction – Conversion of bit strings to integers	16
4.2.1	Converting bit strings to an integers	16
4.2.2	Converting an integer number to a bit string	16
4.2.3	Converting an unsigned integer number to a hexadecimal text representation	17
4.2.4	Converting a hexadecimal text representation to an unsigned integer number	17
4.3	The User permit	18
4.3.1	Definition of User Permit	18
4.3.2	HW_ID Format	19
4.3.3	Check Sum (CRC) Format	19
4.3.4	M_ID Format	19
4.3.5	M_KEY Format	19
4.4	The Data Permit	20
4.4.1	The Permit File (PERMIT.XML)	20
4.4.2	The Permit File - Header content	21
4.4.3	Product sections and Permit Records Fields	21
4.4.4	Definition of the Permit record	21
4.4.5	An example permit.xml file.	22
5	DATA AUTHENTICATION	23
5.1	Introduction to Data Authentication and Integrity Checking	23
5.2	Data Formats for digital signatures, keys and certificates.	25
5.2.1	Creation of key material and certificate signing requests (signed public keys).	26
5.2.2	Example public key.	26
5.2.3	Creation of digital signatures by a data server.	27
5.2.4	Verifying Data Integrity and Digital Identity with an S-100 digital signature	28
5.3	References (update)	28
1	INTRODUCTION	7
1.1	General Description	7
1.2	Participants in the Protection Scheme	8
1.2.1	Scheme Administrator	8
1.2.2	Data Servers	8
1.2.3	Data Clients	9
1.2.4	Original Equipment Manufacturers (OEM)	9
1.2.5	Participant Relationships	9
1.3	References (update)	10
2	DATA COMPRESSION	12
2.1	Overview	12
2.2	Compression Algorithm	12
2.3	Encoding	12
3	DATA ENCRYPTION	13
3.1	What Data is encrypted?	13
3.2	How is it encrypted?	13
3.2.1	Encryption Algorithm	13
4	DATA LICENSING	14
4.1	Introduction	14
4.2	The User permit	15
4.2.1	Definition of User Permit	15
4.2.2	HW_ID Format	15
4.2.3	Check Sum (CRC) Format	16
4.2.4	M_ID Format	16
4.2.5	M_KEY Format	16
4.3	The Data Permit	16
4.3.1	The Permit File (PERMIT.TXT)	17
4.3.2	The Permit File - Header Formats	17
4.3.3	Permit Record Fields	18
4.3.4	Definition of the Cell Permit	18
5	DATA AUTHENTICATION	19
5.1	The main things we’ve agreed during the meeting.	19
5.2	Introduction to Data Authentication and Integrity Checking	19
5.3	Data Formats for digital signatures, keys and certificates.	22
5.3.1	Creation of key material and certificate signing requests (signed public keys).	23
5.3.2	Example public key.	23
5.3.3	Creation of digital signatures by a data server.	23
5.3.4	Verifying Data Integrity and Digital Identity with an S-100 digital signature	24
1	INTRODUCTION	8
1.1	General Description	8
1.2	Participants in the Protection Scheme	9
1.2.1	Scheme Administrator	9
1.2.2	Data Servers	9
1.2.3	Data Clients	10
1.2.4	Original Equipment Manufacturers (OEM)	10
1.2.5	S-63 Participant Relationships	10
1.3	References	11
1.4	Compatibility with Previous Versions	12
1.5	Main Document:	12
1.6	Maintenance	12
1.7	Support	13
2	DATA COMPRESSION	14
2.1	Overview	14
2.2	Compression Algorithm	14
2.3	Encoding	14
3	DATA ENCRYPTION	15
3.1	What Data is encrypted?	15
3.2	How is it encrypted?	15
3.2.1	Encryption of ENC Information	15
3.2.2	Encryption of Other Protection Scheme Information	15
3.2.3	Encryption Algorithm	15
4	DATA LICENSING	16
4.1	Introduction	16
4.2	The Userpermit	17
4.2.1	Definition of Userpermit	17
4.2.2	HW_ID Format	17
4.2.3	Check Sum (CRC) Format	18
4.2.4	M_ID Format	18
4.2.5	M_KEY Format	18
4.3	The Cell Permit	18
4.3.1	The Permit File (PERMIT.TXT)	19
4.3.2	The Permit File - Header Formats	20
4.3.3	Permit Record Fields	20
4.3.4	Definition of the Cell Permit	21
4.3.5	Cell Permit Format	21
5	DATA AUTHENTICATION	23
5.1	Introduction to Data Authentication and Integrity Checking	23
5.1.1	SA Verification	25
5.1.2	Data Integrity	26
5.2	Digital Certificates (SA Authentication)	26
5.2.1	The SA Public Key	27
5.2.2	New Data Servers	27
5.3	Digital Signatures (Verify Data Integrity)	27
5.3.1	Technical Overview of Digital Signatures	28
5.3.2	The SA Digital Certificate (X509v3) Format	28
5.3.3	Digital Signature Encoding	28

PREFACE
	
S-100 Edition 4.0.0		 December 2018

S-100 Edition 4.0.0		 December 2018

S-100 Edition 4.0.0		 December 2018

	
Part 15 – Data Protection Scheme
2
2
Part 15 – Data Protection Scheme
2
Part 15 – Data Protection Scheme
[bookmark: _Toc519256960]Preface

[bookmark: _Ref390480012][bookmark: _Ref390480060]Copyright infringement and data piracy are pervasive problems of the digital era. Electronic Navigational Charts (ENC) or other digital spatial products are not exempt from these issues. As well as the economic impact, the unofficial distribution of nautical information also gives rise to significant safety concerns. As a result, the publishers of official nautical information have sought to protect their data and provide the mariner with a certificate of authenticity through the adoption of a security scheme.

In September 2000, IHO Member States were polled on their views on developing a single IHO Recommended Security Scheme (RSS) (see: IHB Circular Letter 38/2000). Responses indicated that a large majority of the Member States wished to have their ENC data encrypted and agreed that the IHO should adopt a single RSS (see: IHB CL 15/2001 Rev.1). A majority of the Member States responding also supported the adoption of the Primar PRIMAR Security Scheme as the IHO RSS, as it was at the time the de facto standard for ENC protection and the majority of ECDIS manufacturers had already developed the necessary decryption facilities in their systems.

The IHO Committee on Hydrographic Requirements for Information Systems (CHRIS, now HSSC: Hydrographic Services and Standards Committee), at its 13th meeting (Athens, Greece, September 2001), revisited the issue of an RSS and agreed that a small advisory expert group investigate the implications of IHB becoming the security scheme administrator for an RSS and assuming responsibility for the maintenance of an RSS.

The IHO Data Protection Scheme Working Group (DPSWG) reported back to the IHB in January 2002 that there were no technical implications to the IHB becoming the security scheme administrator and that the level of effort to administer the security scheme would be limited and within the IHB resources. The DPSWG further provided a plan to develop an IHO RSS Version 1, based on the Primar Security Scheme. This Report was endorsed by CHRIS Members in February 2002 and the DPSWG was tasked to develop Version 1 of an IHO RSS.

The results were presented to CHRIS, at its 14th meeting (Shanghai, China, August 2002), which recommended that the ENC Security Scheme, as developed by the DPSWG, be submitted to IHO Member States for adoption as an IHO RSS, and that the role as Security Scheme Administrator be transferred to the IHB. These proposals (see: IHB CL 44/2002) were approved by a majority of Member States (see: IHB CL 66/2002). As a result, Edition 1.0 of the IHO Data Protection Scheme was adopted in October 2003 as Publication S-63.

The 18th CHRIS meeting (Cairns, Australia, September 2006) tasked the DPSWG to develop a revised edition of S-63 with the following guidance:
·
· There would be no introduction of new features; changes would be kept to a minimum;.
· Published S-63 guidelines would be included in the standard;.
· S-63 would be reorganized to group issues relevant to the IHB as Scheme Administrator, to Data Servers, and to OEMs, respectively;.
· There would be a more precise description of the correct implementation of the IHO standard.

Accordingly, a draft Edition 1.1 of S-63 was prepared by DPSWG and endorsed by CHRIS at its 19th meeting (Rotterdam, Netherlands, November 2007). This was subsequently endorsed by Member States and adopted in March 2008. Edition 1.1 included supporting documentation, test data and a method to supply ENCs using “Large Media Support”.

In April 2012, small changes were made to Edition 1.1 to remove the hexadecimal limitation of M_ID in order to extend the number of possible M_ID values that the scheme is able to accommodate. This resulted in the publication of edition 1.1.1 of S-63.

In November 2014 an additional annex Annex was added to Edition 1.1.1 to provide a normative reference for the ENC update status report. This report reflects functionality required by edition 4 of the ECDIS type Type approval Approval standard IEC61174, section 4.4.2 and Annex L. No other substantive changes were made to S-63 as a result of this additional annexAnnex;, only clarifications for users of the data Data protection Protection scheme Scheme on how the report is formatted and the definitions of its various fields. This resulted in this edition 1.2.0 of S-63.

The development of S-100 and the IMO resolution MSC.428(98) has required a revision of the Data Protection Scheme. The operational principles for using the protection Protection scheme Scheme have been maintained, but changes have been introduced for the individual security constructs to reflect operational experience with the current version of the protection Protection scheme Scheme and better harmonisationharmonization with international security constructs. In addition will edition 2.0.0 S-100 part 15 also supports more product specifications based on the S-100 data model and where other organisations organizations than IHO can operate as domain owners. S-100 part 15 eEdition 12.0.0 has selected to use international or industry standards for encryption and digital signatures, and this together with S-100 have required a change in how the information is encoded and distributed.

Changes to this Standard, as well as any further developments, will continue to be coordinated by projects team within the S-100 Working Group under HSSC Guidance.

[bookmark: _Toc519256961]Scope
[bookmark: _Toc517879270]
[bookmark: _Toc517879271]

GLOSSARY
[bookmark: _Toc517879273]
Glossary of S-63 Data Protection Scheme Terms
[bookmark: _Toc517879275]
	Blowfish
	Encryption algorithm used by the protection scheme

	Cell Key
	Key used to produce encrypted ENC, and required to decrypt the encrypted ENC information.

	Cell Permit
	Encrypted form of Cell key, created specifically for a particular user.

	Data Client
	Term used to represent an end-user receiving the encrypted ENC information. The Data Client will be using a software application (e.g. ECDIS) to perform many of the operations detailed within the scheme. Typically, an ECDIS user.

	Data Server
	Term used to represent an organisation producing encrypted ENCs or issuing Cell Permits to end-users.

	M_ID
	The unique identifier assigned by the SA to each manufacture. Data Servers use this to identify which M_KEY to use when decrypting the Userpermit.

	M_KEY
	ECDIS manufacturer’s unique identification key provided by the Scheme Administrator to the OEM. It is used by OEMs to encrypt the HW_ID when creating a userpermit.

	HW_ID
	The unique identifier assigned by an OEM to each implementation of their system. This value is encrypted using the OEM’s unique M_KEY and supplied to the data client as a userpermit. This method allows data clients to purchase licences to decrypt ENC cells.

	SA
	Scheme Administrator

	SHA-1
	Secure Hash Algorithm [3]

	SSK
	Self Signed Key (Self Signed Certificate File)

	User Permit
	Encrypted form of HW-ID uniquely identifying the ECDIS system

[bookmark: _Toc517879312]
[bookmark: _Toc517879313]
Chart Related Terms
[bookmark: _Toc517879315]
	Cell
	Common unit used to represent a single product of a product specification. It can be a single S-101 ENC cell or a single S-102 bathymetric file.

	ECDIS
	Electronic Chart Display and Information System as defined by IMO

	ENC
	Electronic Navigational Chart as defined by the ENC Product Specification [1].

	S-57
	Transfer standard for ENC defined by IHO

	S-100
	Universal Hydrographic Data Model defined by IHO

	SENC
	System-ENC (This is the internal format that OEMs convert to when importing data)

[bookmark: _Toc517879334]
[bookmark: _Toc517879335]
Organisations
[bookmark: _Toc517879337]
	ECC
	Electronic Chart Centre AS (www.ecc.no)

	HO
	Hydrographic Office (e.g. Data Server)

	IALA
	International Association of Lighthouse Authorities

	IHB
	International Hydrographic Bureau

	IHO
	International Hydrographic Organisation

	IMO
	International Maritime Organisation

	PRIMAR
	Regional ENC coordinating Centre operated by the Norwegian Hydrographic Service (www.primar.no)

	RENC
	Regional ENC Coordinating Centre integrating ENCs from several HOs into a single service (e.g. Data Server)

	UKHO
	United Kingdom Hydrographic Office (www.ukho.gov.uk)

[bookmark: _Toc517879365]
[bookmark: _Toc517879366]
Computing Terms
[bookmark: _Toc517879368]
	CRC
	Cyclic Redundancy Check

	Dongle
	Sometimes referred to as a hard lock device, It is a hardware device supplied by the OEMs that has the unique system identifier (HW_ID) stored security within

	XOR
	Exclusive OR

[bookmark: _Toc517879378]

INTRODUCTION
This appendixS-100 part 15, later referred to as ‘the Data protection Protection scheme’Scheme’ or ‘Protection Scheme’, describes the recommended standard for the protection of hydrographic or spatial information which are based on the IHO S-100 Universal Hydrographic Data Model. It defines security constructs and operating procedures that must be followed to ensure that the protection Protection scheme Scheme is operated correctly and to provide specifications that allow participants to build compliant systems and distribute data in a secure and commercially viable manner.

[bookmark: _Toc519256962]Normative References
The following referenced documents are required for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including amendments) applies.
FIPS Publication 81, DES Modes of Operation, National Institute of Standards and Technology <www.itl.nist.gov/fipspubs/fip81.htm>
FIPS Publication 180-4, Secure Hash Standard (SHS)
 <https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf>
FIPS Publication 186, Digital Signature Standard (DSS) <www.itl.nist.gov/div897/pubs/fip186.htm>
IHO S-57, IHO Transfer Standard for Digital Hydrographic Data
ISO/IEC 13239:2002, CRC32 checksum algorithm. Information technology -- Telecommunications and information exchange between systems -- High-level data link control (HDLC) procedures
ISO/IEC 18033-3, Information technology – Security techniques – Encryption algorithms – Part 3: Block ciphers
ISO/IEC 21320-1, Document Container File – Part 1: Core
Open SSL Cryptography and SSL/TLS Toolkit <https://www.openssl.org/>
PKCS#10 v1.7, Certification Request Syntax Specification <https://tools.ietf.org/html/rfc2986>
RFC 1423, Privacy Enhancements for Internet Electronic Mail: Part III: Algorithms, Modes and Identifiers <ftp://ftp.isi.edu/in-notes/rfc1423.txt>
RFC 2451, The ESP CBC-Mode Cipher Algorithms <https://tools.ietf.org/html/rfc2451>
RFC 2459 version 3, Internet X.509 Public-key infrastructure and attribute certificate frameworks <https://tools.ietf.org/html/rfc2459>
RFC 5651, Cryptographic Message Syntax (CMS), ITU International Telecommunication Union <https://tools.ietf.org/html/rfc5652#section-6.3>
X.509 Version 3, Information Technology – Open Systems Interconnection – The Directory: Authentication Framework, International Telecommunication Union

[bookmark: _Toc519158438][bookmark: _Toc519159745][bookmark: _Toc519246138][bookmark: _Toc519246546][bookmark: _Toc519256963]
[bookmark: _Toc519158439][bookmark: _Toc519159746][bookmark: _Toc519246139][bookmark: _Toc519246547][bookmark: _Toc519256964]
The Data Protection Scheme was prepared by the International Hydrographic Organisation's (IHO) Data Protection Scheme Advisory Group (DPSWG) and published by IHO as the S-63 Data Protection Scheme. The S-63 standard is based on the protection scheme developed and operated by PRIMAR as part of their protected ENC service. The Electronic Chart Centre AS and United Kingdom Hydrographic Office were the original contributing organisations.
[bookmark: _Toc519158441][bookmark: _Toc519159748][bookmark: _Toc519246141][bookmark: _Toc519246549][bookmark: _Toc519256966]
S-63 edition 2.0.0 is published as an appendix to the IHO S-100 publication. It uses the same security principles as earlier editions of S-63, but the algorithms, encoding and distribution of information has been revised based on the need to support more S-100 based product specifications, use of international security standards and operational experience. The use of digital signatures will also meet IMO resolution MSC.428(98) to reduce cyber security risks. The individual S-100 based Product Specifications will define in more detail which security constructs are being used and on product which files.
[bookmark: _Toc519158443][bookmark: _Toc519159750][bookmark: _Toc519246143][bookmark: _Toc519246551][bookmark: _Toc519256968]
The first edition of S-63 standard was adopted as the official IHO standard, by the IHO member states in December 2002 (IHO CL 66, 2002). It defined the roles and responsibilities for protecting ENC data produced by National Hydrographic Offices and distributed to customers with ECS/ECDIS systems.
[bookmark: _Toc519158445][bookmark: _Toc519159752][bookmark: _Toc519246145][bookmark: _Toc519246553][bookmark: _Toc519256970]
[bookmark: _Toc519256971]General Description
This document Part specifies a method of securing digital nautical, hydrographic and spatial related products and information. The purpose of data protection is threefold:

1. Piracy Protection: 	To prevent unauthorisedunauthorized use of data by encrypting the product information.
2. Selective Access: 	To restrict access to only the products that a customer has acquired a license for.
3. Authentication: 	To provide assurance that the products has come from approved sources.

Piracy protection and selective access are achieved by encrypting the products and providing cell data permits to decrypt them. Cell Data permits have an expiration date to enable access to the products for a licensed period. Data Servers will encrypt the digital products before supplying it to the Data Client. The encrypted products are then decrypted by the end-user system ((e.g.for example ECS/ECDIS/ECS) prior to being reformatted and imported into the System Internal Format (e.g.for example SENC.). Authentication is provided by means of digital signatures applied to the product files.

The security scheme does not specifically address how the product information can be protected once it is within an end-user application. This is the responsibility of the Original Equipment Manufacturers (OEMs).

The scheme allows enablesfor the mass distribution of protected products datasets on hard media (e.g.for example DVD) and can be accessed and used by all customers with a valid license containing a set of data permits. Selective access to individual products is supported by providing users with a licensed set of data permits containing the encrypted cell keys. This license is created using a unique hardware identifier of the target system and is unique to each Data Client. Consequently licenses cannot be exchanged between individual Data Clients.

The scheme uses a compression algorithm to reduce the size of the dataset. Unencrypted product files contain many repeating patterns of information;, e.g.for example coordinate information. Compression is therefore always applied before the product file is encrypted and uncompressed after the decryption on the data client system (normally an ECS/ECDIS/ECS).

[bookmark: _Toc519256972]Participants in the Protection Scheme
There are several types of users of the scheme, these are as follows:

· The Scheme Administrator (SA), of which there is only one;.
· The Data Server (DS), of which there can be many;.
· The Data Client (DC), of which there are many;.
· The Original Equipment Manufacturer (OEM) of which there are many.
·

A more detailed explanation of these terms is given below.

15-4.1 [bookmark: _Toc519256973]Scheme Administrator
The Scheme Administrator (SA) is solely responsible for maintaining and coordinating the protection Protection schemeScheme. The SA role is operated by The International Hydrographic Organization on behalf of the IHO member Member states States and other organisations organizations participating in the protection Protection schemeScheme. These organisations organizations can have a cocordinatingcoordinating role for a maritime product domain;, e.g.for example IMO and IALA. The IHO as the SA will establish procedures with product domain operators using the protection Protection scheme Scheme to protect their products. These procedures will enable these domain coordinators to digitally sign the digital certificates used by their member organisations to participate in the protection Protection schemeScheme.

The SA is responsible for controlling membership of the scheme and ensuring that all participants operate according to defined procedures. The SA maintains the top level digital root certificate used to operate the protection Protection scheme Scheme and is the only body that can certify the identity of the other participants of the scheme.

The SA is responsible for distributing the manufacturer ID (M_ID) and manufacturer key (M_KEY) directly to all registered Data Servers participating in the Protection Scheme.

The SA is also the custodian of all documentation relating to the S-100 Part 15S-63 Data Protection Scheme.

15-4.2 [bookmark: _Toc519158449][bookmark: _Toc519159756][bookmark: _Toc519246149][bookmark: _Toc519246557][bookmark: _Toc519256974][Discussion: Nothing in the scheme prevents a Data server, not SA, do digitally sign the certificate of another organization to establish a chain of trust which can be traced back to IHO. No possibilities to revoke]
15-4.3 [bookmark: _Toc519256975]Data Servers
Data Servers (DS) are responsible for the encrypting encryption and digital signing of the products datasets in compliance with the procedures and processes defined in the scheme. Data Servers issue icencesLicenses (data permits) so that Data Clients, with valid user permits, can decrypt the product data.

Data Servers will use the M_KEY and HW_ID information, as supplied by the SA, to issue encrypted product product cell keys to each specific installation. Even though the cell keys used to encrypt each cell dataset are the same for individual data clientsidentical, they will be encrypted using the unique HW_ID and therefore cannot be transferred between other system installations from the same manufacturer.

The scheme does not impede agents or distributors from providing data services to their customers. Agreements and structures to achieve this are outside the scope of this document. This document contains only the technical specifications to produce S63 compliant data services and systemsprotected datasets compliant with this standard.

Hydrographic Offices, data producers,, Value Added Resellers and RENC Oorganiszations are examples of Data Servers.

15-4.4 [bookmark: _Toc519256976]Data Clients
Data Clients (DC) are the end users of datasets ENC information and will receive protected information from the Data Servers to access and use the datasets and services. The Data Client’s software application (OEM System) is responsible for authenticating the digital signatures applied to the product files and decrypting the ENC dataset information in compliance with the procedures defined in the scheme.

Navigators with ECDIS/ECS systems are examples of Data Clients.

15-4.5 [bookmark: _Toc519256977]Original Equipment Manufacturers (OEM)
Original Equipment Manufacturers (OEMs) subscribing to the IHO Data S-100 Data PProtection Scheme Scheme must build a software application according to the specifications set out in this document and self-verify and validate it according to the terms mandated by the SA. This Parte S-63 standard will establish test data for the verification and validation of OEM applications for various S-100 based product specifications when products become available. The SA will provide successful OEM applicants with their own unique manufacturer key and identification (M_KEY and M_ID).
The manufacturer must provide a secure mechanism within their software systems for uniquely identifying each end user installation. The scheme requires each installation to have a unique hardware identifier (HW_ID).

The software application will be able to decrypt the cell product keys in the data permits using the HW_ID stored in either the hard lock or soft lock devices attached to or programmed within the application to subsequently decrypt and uncompress the product dataset files. Product integrity can be verified by authenticating the digital signature provided with the product dataset files, and the underlying product file consistency controls available in the underlying S-100 based product files.

15-4.6 [bookmark: _Toc519256978]S-63 Participant Relationships
The Scheme Administrator (SA), of which there can only be one, authenticates the identity of the other participants within the scheme. All Data Servers and System Manufacturers (OEMs) must apply to the SA to become participants in the scheme and, on acceptance, are supplied with proprietary information unique to them. Data Clients are customers of Data Servers and OEMs, where Data Servers supply data services; and OEMs the equipment to decrypt and display these services.
15-4.5.1 [bookmark: _Toc519256979]Domain Coordinator
The SA will sign the public key of Data Servers to create their digital certificate to be used in the operation of the Protection Scheme. It is also possible for Domain Coordinators to sign the public key of their member organizations to create their digital certificates. The Domain Coordinators will inform the SA about the Data Server’s identity and contact details. The SA will distribute M_ID and M_KEY information directly to all Data Servers participating in the Protection Scheme when they join the scheme and more Data Clients are added.
15-4.5.1

[image:]

Figure 15-1 – Relationship between Protection Scheme participants
Figure 1: Relationship between protection scheme participants

References
[1] 	S57 edition 3.1: IHO Transfer Standard for Digital Hydrographic Data, International Hydrographic Bureau (www.iho.int)
[2] 	Digital Signature Standard (DSS), FIPS Pub 186 (www.itl.nist.gov/div897/pubs/fip186.htm)
[3] 	Secure Hash Standard (SHA), FIPS Pub 180-1 (www.itl.nist.gov/div897/pubs/fip180-1.htm)
[4] 	Information Technology – Open Systems Interconnection – The Directory: Authentication Framework. X.509 version 3 - International Telecommunication Union
[6] 	ZIP File Format Specification, ISO/IEC 21320-1 "Document Container File — Part 1: Core"
[7] 	DES Modes of Operation, FIPS Pub 81 (www.itl.nist.gov/fipspubs/fip81.htm)
[8] 	RFC 1423: Privacy Enhancements for Internet Electronic Mail: Part III: Algorithms, Modes and Identifiers (ftp://ftp.isi.edu/in-notes/rfc1423.txt)
[9] 	Blowfish encryption algorithm, B. Schneier, Fast Software Encryption, Cambridge Security Workshop Proceedings (December 1993), Springer-Verlag, 1994, pp. 191-204. (www.counterpane.com)
[10] 	CRC32 checksum algorithm. Information technology -- Telecommunications and information exchange between systems -- High-level data link control (HDLC) procedures. ISO/IEC 13239:2002.
[11] 	Information technology – Security techniques – Encryption algorithms – Part 3: Block ciphers, ISO/IEC 18033-3:
[12] 	The ESP CBC-Mode Cipher Algorithms, RFC 2451, https://tools.ietf.org/html/rfc2451
[13] 	Cryptographic Message Syntax (CMS), RFC 5652, https://tools.ietf.org/html/rfc5652#section-6.3
[14] 	Internet X.509 Public-key infrastructure and attribute certificate frameworks version 3, RFC 2459, ITU International Telecommunication Union, https://tools.ietf.org/html/rfc2459
[14] 	Secure Hash Standard (SHS), FIPS-PUB 180-4, National Institute of Standards and Technology, https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
Compatibility with Previous Versions
The first version of S-63 uses the same algorithms and the same file formats and contents as the security scheme operated by PRIMAR, PRIMAR-Stavanger and was published as IHO S-63 Version 1.0. This version of the S-63 standard has been amended to provide better definitions and explanation on the operation of the protection scheme.
A defined test data set has been produced for this version and should be used by OEMs to verify and validate implementations of the S-63 Data Protection Scheme during self certification.

Version 1.1 of the standard has been produced in light of experience gained by Data Servers and ECS/ECDIS Manufacturers during the operation of the scheme under version 1.0. This version attempts to more clearly define the standard by removing duplication and possible ambiguity. It also contains additional mechanisms that will enable manufacturers to make their systems more intuitive for users of ECS/ECDIS. The following list refers to the revisions within the standard.
Removal of unnecessary duplication
Specification of how and under what conditions certain files must be used.
Removal of the permit dependency on the cell edition.
Additional information to enable Data Clients to manage ENC data more effectively and efficiently.
Identification of a loading strategy to enable more efficient loading of encrypted ENCs.

Edition 2.0.0 of the protection scheme uses the same operational principles as earlier editions, but changes have been introduced for a majority of all security constructs to reflect the operational experience with the current version of the protection scheme and better harmonisation with international security constructs. This edition will also support more product specifications based on the S-100 data model and where other organisations than IHO can operate as domain owners. This edition of the standard can only be used to protect digital products based on the S-100 Data Model and is not compatible with the S-57 standard.

It is the responsibility of Data Servers to provide services that are backwardly compatible

Main Document:
To be completed

Maintenance
Changes to this standard will conform to the “Principles and procedures for making changes to IHO standards and specifications”, as approved by the 18th CHRIS meeting (Cairns, Australia, Sept. 2006).

Support
Support in using and implementing this standard is provided to users by members of S-100 project team responsible for preparing and maintaining the S-100 protection scheme, via the IHO (info@iho.int). In addition an inventory of frequently asked questions (FAQ) is maintained by the IHO on the ECDIS section of the IHO website (www.iho.int).

	

[bookmark: _Toc519256980]DATA COMPRESSIONata compression
15-5.1 [bookmark: _Toc519256981]Overview
The content of productscs based on the S-100 Data Model will, because of theirits structure, contain repeating patterns of information. Examples of this are small variations in the co-ordinate information within thee product file.

If compression is applied, the files are always compressed before they are encrypted as the effectiveness of any compression algorithm relies on the existence of structured data contents. The individual S-100 based product specifications will specify if compression is being used.

15-5.2 [bookmark: _Toc519256982]Compression Algorithm
The Protection Scheme uses the ZIP algorithm to compress and uncompress files. The compression method is DEFLATE. Each file is compressed into a single file archive. The encryption and digital signature features of ZIP are not used.
The security scheme uses the ZIP algorithm1 [6] to compress and uncompress product files. It is identical to the algorithm used in previous versions of the IHO S-63 standard and available in many commercial applications e.g. WinZip, PKZIP.

The following restrictions are applied on the ZIP format in accordance with ISO/IEC 21320-1:2015:
Files in ZIP archives may only be stored uncompressed, or using the "deflate" compression (i.e. compression method may contain the value "0" - stored or "8" - deflated).
The encryption features are not used.
The digital signature features are not used.
The "patched data" features are prohibited.
Archives may not span multiple volumes or be segmented.

15-5.3 Potential Data Servers and OEMs should be aware that in the past errors have occurred when Data Servers compress data and it is interpreted by popular implementations of the ZIP algorithm as “text” data. If the data is uncompressed with incorrect parameters it can corrupt the product file leading to failing integrity checks. Data Servers and OEMs are advised to carefully implement compression/un-compression within their systems.
15-5.4 [bookmark: _Toc519158459][bookmark: _Toc519159766][bookmark: _Toc519246159][bookmark: _Toc519246567][bookmark: _Toc519256984]
15-5.5 [bookmark: _Toc519256985]Encoding
The individual S-100 based Pproduct Sspecifications will provide more details if compression is being used, and which files will be compressed. If compression is applied, it is recommended that all product files within the exchange set will be compressed.

The use of compression will be encoded:
· S-100_ExchangeCatalogue-compressionFlag with value 1
· S-100_ExchangeCatalogue-algorithmMethod with value S63e2.0.0S100p15e1.0.0

[Discussion: Since the compression flag is located in the S-100_ExchangeCatalogue-compressionFlag and algorithmMethod, either all or none of the files are compressed. Can not have some S-102 HDF5 files compressed and not others from multiple providers. Same situation for S-101 files, either all or none ENC files. Alternatively can the individual S-100 based product specification identify which files in the exchange set will be compressed]

[bookmark: _Toc519256987]DATA ENCRYPTIONData encryption
15-6.1 [bookmark: _Toc519256988]What Data is encrypted?
AnyThe Pproduct Sspecifications that is based on the S-100 Data Model mustwill define whetherif encryption will will be used and which files will be encrypted.

Only one encryption algorithm is used within the Scheme. Starting with S-63e2.0.0 to support S-100 based products, the encryption algorithm has been changed from Blowfish to Advanced Encryption Standard (AES) [11] in Cipher Block Chaining (CBC) [12] mode of operation.

When encrypted, the encryption algorithm must be the Advanced Encryption Standard (AES) in Cipher Block Chaining (CBC) mode of operation. It is always assumed that the complete product file will be encrypted. All information to be encrypted will use tAES-CBC algorithm.

In addition will the OEM System HW_ID (hardware ID) will be encrypted and provided to the Data Client in the form of a user permit. The cell keys used to encrypt the product files are themselves encrypted by the Data Server and supplied to Data Clients as data cell permits. Information about the encryption algorithm is available in clause 15-6.2.1 section 3.2.3.

15-6.2 [bookmark: _Toc519256989]How is it encrypted?
Each single product is encrypted using a unique Cell kKey. The same Cell kKey is used to encrypt all files associated with the product and all updates issued for the product edition. The scheme however, allows for the cell keys to be changed at the discretion of the Data Server. when a new edition of the product is released. The Cell kKeys are delivered to Data Clients in the form of data cell permits.
15-6.2.1 [bookmark: _Toc519256990]Encryption Algorithm

Encryption of ENC Information
The product files are encrypted using a 128 bit key.

Encryption of Other Protection Scheme Information
The HardwareID, Userpermit and the Cell permit contents are encrypted using a 128 bit key.

15-4.5.2 [bookmark: _Ref391842721]Encryption Algorithm
The scheme encrypts all relevant information using Advanced Encryption Standard (AES) [11] in Cipher Block Chaining (CBC) [12] mode of operation. The AES-CBC block size is 128 bits. The encryption key length is 128 bits. Block size padding will be in accordance with PKCS7 [13].

The AES-CBC initialization vector will always be 128 bits (16 bytes). It will be the name of the product file and padded in accordance with PCKS7 [13] if the file name
 is shorter than 16 bytes.

Refer to the S-100 based product specification for information on how encryption is applied to the product files.

For encryption of permits and data files the Advanced Encryption Standard (AES) block cipher algorithm is used. This is a symmetric-key algorithm. This means that the same key is used for encryption and decryption. The algorithm defines how one block of plain text is converted to one block of cipher text and vice versa. The block size of the AES is always 16 Bytes (128 bit). The key length can be chosen from 128 bit, 192 bit or 256 bit. The corresponding variants are named AES-128, AES-192, or AES-256.

The AES algorithm can only encrypt one block of plain text. For larger messages a block cipher mode of operation has to be used. This Protection Scheme chooses the Cipher Block Chaining (CBC) mode for encryption of more than one block of data. In this mode of operation it is required that the length of the plain text must be an exact multiple of the block size; padding is required.

The padding methods that will be used is described in PKCS#7 [12]. It adds N bytes to the message until its length is a multiple of 16 Bytes. The value of each byte is N. Note that if the original plain text has already a multiple of 16 as length a full block of 16 bytes each having the value of 16 must be added.
Table 15-1 – Plain Text padding

	Plain text
	Padded Plain Text

	xx
	xx 0F 0F 0F 0F 0F 0F 0F
0F 0F 0F 0F 0F 0F 0F 0F

	xx xx
	xx xx 0E 0E 0E 0E 0E 0E
0E 0E 0E 0E 0E 0E 0E 0E

	xx xx xx
	xx xx xx 0D 0D 0D 0D 0D
0D 0D 0D 0D 0D 0D 0D 0D

	xx xx xx xx
	xx xx xx xx 0C 0C 0C 0C
0C 0C 0C 0C 0C 0C 0C 0C

	xx xx xx xx xx
	xx xx xx xx xx 0B 0B 0B
0B 0B 0B 0B 0B 0B 0B 0B

	xx xx xx xx xx xx
	xx xx xx xx xx xx 0A 0A
0A 0A 0A 0A 0A 0A 0A 0A

	xx xx xx xx xx xx xx
	xx xx xx xx xx xx xx 09
09 09 09 09 09 09 09 09

	xx xx xx xx xx xx xx xx
	xx xx xx xx xx xx xx xx
08 08 08 08 08 08 08 08

	xx xx xx xx xx xx xx xx
xx
	xx xx xx xx xx xx xx xx
xx 07 07 07 07 07 07 07

	xx xx xx xx xx xx xx xx
xx xx
	xx xx xx xx xx xx xx xx
xx xx 06 06 06 06 06 06

	xx xx xx xx xx xx xx xx
xx xx xx
	xx xx xx xx xx xx xx xx
xx xx xx 05 05 05 05 05

	xx xx xx xx xx xx xx xx
xx xx xx xx
	xx xx xx xx xx xx xx xx
xx xx xx xx 04 04 04 04

	xx xx xx xx xx xx xx xx
xx xx xx xx xx
	xx xx xx xx xx xx xx xx
xx xx xx xx xx 03 03 03

	xx xx xx xx xx xx xx xx
xx xx xx xx xx xx
	xx xx xx xx xx xx xx xx
xx xx xx xx xx xx 02 02

	xx xx xx xx xx xx xx xx
xx xx xx xx xx xx xx
	xx xx xx xx xx xx xx xx
xx xx xx xx xx xx xx 01

	xx xx xx xx xx xx xx xx
xx xx xx xx xx xx xx xx
	xx xx xx xx xx xx xx xx
xx xx xx xx xx xx xx xx
10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10

xx = Arbitrary Bytes

In CBC mode each block of plain text is XORed with the previous cipher text block before being encrypted. An initialization vector IV is required for the first block. The mathematical formula is:

 	(3a)
 	(3b)

Ci is the ith block of cipher text; Pi is the ith block of plain text. EK is the encryption method of AES encrypting exactly one block. IV is the initialization vector, and is the XOR operation.

[image: CBC encryption.svg]
Figure 15-2 – Cipher Block Chaining (CBC) mode encryption (Source: Wikipedia)

Decryption is defined as:
 	(4a)
 	(4b)

DK is the decryption method of AES decrypting exactly one block.

[image: CBC decryption.svg]
Figure 15-3 – Cipher Block Chaining (CBC) mode decryption (Source: Wikipedia)

Normally the initialization vector must be transferred from the encryption to the decryption. However an incorrect IV at the decryption will only corrupt the first plain text block. This can be easily recognised from the formulas and the diagrams. Each plain text block depends only on two adjacent cipher text blocks.

This behaviour will be used in the following modification of the CBC mode.

On encryption of data files the plain text will be prepended by a single random block. Then encryption is done as normal using a random initialization vector. This vector does not have to be transferred to the decryption at the Data Client.

On decryption an arbitrary initialization vector can be used and after normal CBC decryption the first plain text block is discarded. The rest is the original plain text data file.

This procedure does not require the transport of the IV or the use of a predicted IV within the data permit. The first option would complicate the process of data transfer and the second would make it vulnerable to attacks especially if the first blocks of plain text are commonly known (as ISO/IEC 8211 Data Descriptive Records).
15-6.2.2 [bookmark: _Toc519256991]AES examples
15-4.5.3
The following examples are taken from the FIPS documentation.

Encrypting and decrypting of exactly one block:

Key128: 	K = {00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0a, 0b, 0c, 0d, 0e, 0f}
Plain Text:	P = {00, 11, 22, 33, 44, 55, 66, 77, 88, 99, aa, bb, cc, dd, ee, ff}
Cipher Text: 	C = {69, c4, e0, d8, 6a, 7b, 04, 30, d8, cd, b7, 80, 70, b4, c5, 5a}

Key192: 	K = {00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0a, 0b, 0c, 0d, 0e, 0f,
	 10, 11, 12, 13, 14, 15, 16, 17}
Plain Text:	P = {00, 11, 22, 33, 44, 55, 66, 77, 88, 99, aa, bb, cc, dd, ee, ff}
Cipher Text: 	C = {dd, a9, 7c, a4, 86, 4c, df, e0, 6e, af, 70, a0, ec, 0d, 71, 91}

Key256: 	K = {00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0a, 0b, 0c, 0d, 0e, 0f,
	 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1a, 1b, 1c, 1d, 1e, 1f}
Plain Text:	P = {00, 11, 22, 33, 44, 55, 66, 77, 88, 99, aa, bb, cc, dd, ee, ff}
Cipher Text: 	C = {8e, a2, b7, ca, 51, 67, 45, bf, ea, fc, 49, 90, 4b, 49, 60, 89}

The following example documents the modified CBC mode:
Key128: 	K = {12, 34, 56, 78, 9a, bc, de, f0, 12, 34, 56, 78, 9a, bc, de, f0}
Plain Text: 	P = {fe, dc, ba, 98, 76, 54, 32, 10}
Plain Text after prepending a random block:
P’ = {48, d2, 4e, 7c, 00, 2f, 67, 4e, 93, 1d, ee, 27, 42, 17, a3, 4c}
 {fe, dc, ba, 98, 76, 54, 32, 10}
Plain Text (padded):
P” = {48, d2, 4e, 7c, 00, 2f, 67, 4e, 93, 1d, ee, 27, 42, 17, a3, 4c}
 {fe, dc, ba, 98, 76, 54, 32, 10, 08, 08, 08, 08, 08, 08, 08, 08}
Initialization vector (random):
IVE = {45, b5, 00, d7, 28, 39, 42, bb, 85, 61, 28, d5, 97, 15, ca, 25}
Cipher Text using CBC Mode:
C = {ba, 45, ee, 06, 02, a6, 29, 35, 7a, e3, 90, 2c, 22, 4d, d9, d5}
 {dd, 3b, 07, 3b, 84, 7f, 4d, 43, 28, 71, 19, 43, 97, d9, a6, 03}

For the decryption an arbitrary initialization vector can be used; for example:
IVD = {00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00}

Decryption using the CBC will give the following plain text. The bytes added by the padding are already removed:
PD‘ = {0d, 67, 4e, ab, 28, 16, 25, f5, 16, 7c, c6, f2, d5, 02, 69, 69}
 {fe, dc, ba, 98, 76, 54, 32, 10}

Note that the first block is different from the one in P‘.

After discarding the first block the original message is recovered.
PD = {fe, dc, ba, 98, 76, 54, 32, 10} = P

[bookmark: _Toc519256992]DATA LICENSING Data encryption and licensing
15-7.1 [bookmark: _Toc519256993]Introduction
15-7.1 [bookmark: _Ref390473895]Introduction
Data Clients generally do not buy the S-100 based products but are licensed to use themit. Licensing is the method that Data Servers use to give Data Clients selective access to up-to-date products for a given period of time.

To operate the scheme effectively there must be a means where Data Client systems can unlock the encrypted dataENC cells. To unlock the data the Data Clients system must have access to the cell keys that were used to encrypt the licensed dataproduct files. These keys are supplied to the Data Client, encrypted, in a permit file containing a set of cell permits. It is these data cell permits that contain the encryption keys.

To make each set of datacell permits exclusive the cell keys must be encrypted using something that is unique to the Data Clients system. OEMs assign a unique identifier (HW_ID) to each of their systems and provide an encrypted copy of this, in the form of a user permit, to each Data Client. The HW_ID is encrypted and storedstored in the user permit encrypted.

[image:]OEMs encrypt the HW_ID with their own unique manufacturer key (M_KEY) so that a HW_ID cannot be duplicated by another manufacturer. The IHO, as the Scheme Administrator, provides the Data Servers with access to the OEM M_KEYs and can therefore decrypt the HW_ID stored in the user permit. Data Servers encrypt their cell keys with the manufacturers HW_ID when producing a set of cell data permits. This makes them unique to the Data Client and as such not transferable between Data Client systems.

[image:]
Figure 15-4 – High level licensing diagram based on S-101 ENC products

15-7.2 [bookmark: _Toc519256994]Conversion of bit strings to integers
15-7.2.1 [bookmark: _Toc519256995]Converting bit strings to an integer

Figur 2 High level licensing diagram based on S-101 ENC products
15-7.2

15-4.5.4
A sequence of bits {b1, b2, …, bn} defines an unsigned integer I number by:
	(1a)

Or

	(1b)

The bit b1 is the most significant bit and the bit bn is the least significant bit of the sequence. The integer will be in the range: .

In most implementations the bit string will be organized as a sequence of bytes {B0,B1,…,Bm}, with:

 with and 	(2)

A possible implementation of converting such a byte sequence to an integer number is given by the following pseudo code.

Input: Byte sequence B={B0, B1,…,Bm}
Output: non-negative integer number I

Let I=0
for k from 0 to m
I = I *28
I = I + Bk
Return I
15-7.2.2 [bookmark: _Toc519256996]Converting an integer number to a bit string

15-4.5.5 Converting an integer number to a bit string
Formula 1a and 1b describe how a bit string is related to a corresponding (non-negative) integer number. Assuming that the bit string is organized as a sequence of bytes as defined by (2) the following algorithm shows how to transform an unsigned integer number to a bit string.
Input: a non-negative integer number I with 0<=I<2n
Output: a sequence of bytes B of length
Let B be an empty sequence
If I = 0
Append the byte b=0 to B
Else
While I > 0 do
Let
Prepend c to B
Let
While the length of B is < m
Prepend 0 to B
Return B

Note that the division by 28 is equivalent by the bit shift operation I >>8
15-7.2.3 [bookmark: _Toc519256997]Converting an unsigned integer number to a hexadecimal text representation

15-4.5.6

The following pseudo code shows how to convert an unsigned integer number to its hexadecimal text representation. In this text representation each digit can have 16 different values.

The integer I is defined as:

	(3)

Table 15-2 – Conversion of unsigned integer to hexadecimal text

	Digit d
	Bit string
	Character
	ASCII Code (Hex)
	ASCII Code (dec)

	0
	0000
	‘0’
	30
	48

	1
	0001
	‘1’
	31
	49

	2
	0010
	‘2’
	32
	50

	3
	0011
	‘3’
	33
	51

	4
	0100
	‘4’
	34
	52

	5
	0101
	‘5’
	35
	53

	6
	0110
	‘6’
	36
	54

	7
	0111
	‘7’
	37
	55

	8
	1000
	‘8’
	38
	56

	9
	1001
	‘9’
	39
	57

	10
	1010
	‘A’
	41
	65

	11
	1011
	‘B’
	42
	66

	12
	1100
	‘C’
	43
	67

	13
	1101
	‘D’
	44
	68

	14
	1110
	‘E’
	45
	69

	15
	1111
	‘F’
	46
	70

The algorithm is:

Input: An unsigned integer number I
Output: The hexadecimal text representation S
Let S be an empty sequence of characters.
If I = 0
Let S = “0”
Else
While I>0
Let c be the character corresponding to the value
Prepend c to S
Let
Return S
15-7.2.4 [bookmark: _Toc519256998]Converting a hexadecimal text representation to an unsigned integer number

15-4.5.7
The following algorithm shows how to convert a hexadecimal text representation of an unsigned integer number to the integer number itself.

Input: A hexadecimal text representation S of an unsigned integer number S = {s1,s2,…,sm}
Output: An unsigned integer number I
Let I = 0
For I = 1 to m
I = I*16
I = I + d; where d is the digit value corresponding to the character Si
Return I

15-7.3 [bookmark: _Toc519256999]The User Permit

15-7.3 [bookmark: _Ref391844117]The Userpermit
The user permit is created by OEMs and supplied to Data Clients as part of their system so that they can obtain the necessary access to encrypted products from Data Servers. The following section defines the composition and format of the user permit.

All Data Clients with systems capable of using data, protected in accordance withwith the the IHO Data Protection Scheme,S-63 scheme, must have a unique hardware identification (HW_ID) defined by the data client built into their end-user system. Such a HW_ID is often implemented as a dongle or by other means ensuring a unique and tamperproof identification for each installation.	Comment by Anthony Pharaoh: S-100 Part ???

The HW_ID is unknown to the Data Client, but the OEM will provide a user permit that is an encrypted version of the HW_ID and unique to the Data Client’s system. The user permit is created by taking the assigned HW_ID and encrypting it with the manufacturer key (M_KEY). The CRC32 algorithm is run on the encrypted HW_ID and the result appended to it. Finally the manufacturer attaches their assigned manufacturer identifier (M_ID) to the end of the resultant string. The M_KEY and M_ID values are supplied by the SA and are unique to each manufacturer providing IHO Data Protection Scheme S-63 compliant systems.

The Data Client gains access to S-63 encrypted S-100 based encrypted productss by supplying theiris user permit to the Data Server. This enables the Data Server who can to then issue Cell Data Permits specific to the Data Client’s user permitto it. Since the user permit contains the manufacturers unique M_ID this can be used by Data Servers to identify which M_KEY to use to decrypt the hardware ID in the user permitit. The M_ID is the last six characters of the uUser permit. A list of the manufacturer M_KEY and M_ID values isis issued and updated by the SA to all Data Servers subscribing to the scheme. This list will be updated periodically as new OEMs join the scheme.
15-7.3.1 [bookmark: _Toc519257000]Definition of user permit

15-4.5.8 Definition of Userpermit
The user permit is 28 characters long and shallmust be written as ASCII text with the following mandatory format and field lengths:
Table 15-3 – User permit field structure

	Encrypted HW_ID
	Check SUM (CRC)
	M_ID Manufacturer ID

	128 bits (32 hex digitscharacters)
	8 hex digitscharacters
	6 hex digitscharacters

Any alphabetic character will be written in upper case.

Example: User permit sStructure: (to be completed)
AD1DAD797C966EC9F6A55B66ED98281599B3C7B1859868
The structure of this user permit is explained in the next section.
15-7.3.1.1 HW_ID Format
111122223333444455556666AAAABBBB1234567830313233343536
15-4.5.9 HW_ID Format
The HW_ID is a 32 digit hexadecimal number defined by the OEM manufacturer. Such a HW_ID can be implemented as a dongle or by other means ensuring a unique and tamperproof identification of each installation. Manufactures, with the consent of the Data Server, may use the same HW_ID on more than one system unit at an installation site; e.g. multiple ECDIS systems on a vessel bridge. The HW_ID must be stored within the system in a secure way.

The OEM manufacturer must assign a unique HW_ID for each installation. It is recommended that the HW_IDs are not sequential.

The HW_ID will be stored in an encrypted form in the uUser permit. It is encrypted using the AES-CBC algorithm with the M_KEY as the key resulting in a 128 bits valuedigit encoded as a 32 digit (16 bytes) hexadecimal number. The encrypted HW_ID is then represented in its ASCII form in the user permit as 32 digitcharacters. Note that the size of the HW_ID is identical to the AES-CBC block size and does not require any padding. when used as the encryption key.

Example of HW_ID is: 40384B45B54596201114FE99042201111122223333444455556666AAAABBBB
Example of encrypted HW_ID is: AD1DAD797C966EC9F6A55B66ED982815
(M_KEY=4D5A79677065774A7343705272664F72) (to be completed)
15-7.3.1.2 Check Sum (CRC) Format

15-4.5.10 Check Sum (CRC) Format
The Check Sum is an 8 digitcharacter hexadecimal number. It is generated by taking the encrypted HW_ID and converting it to a 32 character hexadecimal string. It is then hashed using the algorithm CRC32 [10] and the 4 bytes converted to an 8 character hexadecimal string.

The Check Sum is not encrypted and allows the integrity of the uUser permit to be checked.

The Check Sum in the above example is:
· Example HW_ID: 40384B45B54596201114FE99042201
· Example Encrypted HW_ID: AD1DAD797C966EC9F6A55B66ED982815
· Checksum: 99B3C7B1
15-7.3.1.3 M_ID Format

15-4.5.11 : (to be completed)
15-4.5.12
15-4.5.13 M_ID Format
The M_ID is a 6-character alphanumeric code expressed as ASCII representation provided by the SA. The SA will provide all licensed manufacturers with their own unique Manufacturer Key and Identifier (M_KEY and M_ID) combination. The manufacturer must safeguard this information.

The SA will provide all licencedlicensed Data Servers with a full listing of all manufacturer codes as and when new manufacturers subscribe to the scheme. This information is used by the Data Server to determine which key (M_KEY) to use to decrypt the HW_ID in the User permit during the creation of Data Client cell permits.

The M_ID in the above example is: 859868123456 or 30313233343536 (ASCII3)
15-7.3.2 [bookmark: _Toc519257001]M_KEY Format

15-4.5.14
The M_KEY is a random 32 digit hexadecimal (128 bits) number assigned to the manufacturer and provided by the SA. The OEM uses this key to encrypt assigned HW_ID when generating user permits. The OEM must store it securely. This key is used by the Data Server to decrypt assigned HW_IDs. Note that the size of the M_KEY is identical to the AES-CBC block size and does not require any padding. when used as the encryption key.

Example of the M_KEY is: 4D5A79677065774A7343705272664F721234567890ABCDEF1234567890ABCDEF

15-7.4 [bookmark: _Toc519257002]The Data Permit

15-7.4 The Cell Permit
To decrypt a dataproduct file the Data Client must have access to the encryption key (see section 4.115-6.2.1) used to encrypt it. Since the encryption keys are only known to the Data Server there needs to be a means of delivering this information to Data Clients in a protected manner. This information is supplied by the Data Server (e.g. RENC or VAR) to the Data Client in an encrypted form known as a cell permit. A single file is provided to deliver the cell data permit and it is named PERMIT.TXT XML (see clause 15-7.4.1) section 4.3.1). This file may contain several product permits based on the product coverage required by the Data Client.

The PERMIT.TXT XML file will be delivered either on hard media or using online services in accordance with the Data Servers operating procedures. These procedures will be made available to Data Clients when purchasing a license.

Each cell permit record within the data permit file also contains additional fields that are supplied to assist OEM systems to manage the Data Clients license and permit files from multiple Data Servers, see clause 15-7.4.2 section 4.3.3.

Data Clients can obtain a licence to access products by supplying the Data Server with their unique user permit (see clause 15-7.3 section 4.2). Data Servers can then extract the HW_ID from the user permit, using the Data Client’s M_KEY, and create client specific cell permits based on this value. The format of a cell permit file record is described below in clauses 15-7.4.1 to 15-7.4.4 sections 4.3.2 & 4.3.3.

Since dataCell pPermits are issued for a specific HW_ID they are consequently not transferable between installations (Data Client Systems). This method of linking the permit to the installation supports the production of generically encrypted data CDs which can be distributed to all Data Clients subscribing to a service.

The Data Clients system decrypts the Cell pPermit using the assigned HW_ID stored securely by hardware or software means. The decrypted cell keys can then be used by the system to decrypt the licensed productss. Since several Data Servers can make permit files for a specific type of product, it is the responsibility of the Data Client system to manage permit files from multiple Data Servers.
15-7.4.1 [bookmark: _Toc519257003]The Permit File (PERMIT.XML)

15-4.5.15 [bookmark: _Ref391844015][bookmark: _Ref391844259]The Permit File (PERMIT.TXT)
The Cell Permit will always be provided in a file called PERMIT.TXT, Tthe filename will always be provided in UPPERCASE as will any alphabetic characters contained in the file. The file is completely encoded in ASCII. OEMs should be aware that all ASCII text files generated by the scheme Protection Scheme may contain ambiguous end-of-line markers such as CR or CRLF and should be able to deal with these.

The PERMITPRODUXT.TXT XML file can contain multiple sections with a corresponding XML element as follows:
Table 15-4 – PERMIT.XML elements

	XML elementSection
	Description

	hHeader
	This includes the file creation date, the name of the Data Server and the format version.

	pProducts
	Cell Ppermits from the Data Server for the specified product.

	digitalSignature
	The Data Server digital signature of the permit appended to the PERMIT.XML.TXT file

Note that the PERMIT.XMLTXT file can contain cell permits for multiple products provided by the Data Server. OEMs must ensure that their end-user software is able to merge permits from multiple data servers.
15-7.4.2 [bookmark: _Toc519257004]The Permit File - Header content

The Data Server will make available information regarding how the permit files will be made available whether on hard media or online services. The following table defines the content and format of each section within the permit files separated by “new lines [NL]”.

15-4.5.16 [bookmark: _Ref391844082]The Permit File - Header Formats
The following table defines the content and format of each section within the permit XML file.
The following table defines the content and format of each section header within the permit file.
 Table 15-5 – Contents and format of PERMIT.XML

	SectionContent
	FieldnameXML element
	DescriptionValue

	Date and time

	date:DATE

	The field name, date and time is separated by a space character (SP <h20>). The date will be provided as YYYYMMDD and the time as HH:MM using the 24 hour clock.
Example: :DATE 20180320 17:11

	Provider
	dataserver:DATASERVER
	Name of Data Server who has generated the permit file. The Data Server name should be consistent and use the same organizational namecontact as defined in S100_ExchangeCatalogue – contact.
Example: :DATASERVER PRIMAR

	Version Meta Permit version

	version:VERSION

	VersionEdition number of theS-100 S-63 standard. It will be compatible with the IHO version numbering scheme X.Y.Z. For example 4.0.0
Example: :VERSION 2.0.0

	Product typeUser Permit
	userpermit:PRODUCT
	All cell permits associated for the defined product type. Multiple product types can be included in PRODUCTS.TXT. All cell permits for a product type shall be grouped together
Example: :PRODUCT S101The user permit that the permit is for. This allows the client system or implementer to validate the destination. The end-user system must be capable of checking if the permit is for the designated system on a multi system bridge

Shall we include the User Permit of the destination system in the Header? End-user system can quickly check if permit is for this system on a multi system bridge?

Example:	:DATE 20180320 17:11
	:DATASERVER PRIMAR
	:VERSION 2.0.0
	Field
	Value

	Cell Permit
	As defined in section 4.3.4 & 4.3.5

	Service Level Indicator

	0 for subscription permit
1 for single purchase permit

	Edition Number
	Product edition number

	Data Server ID
	This is a six character alphanumeric issued by the SA

	Comment
	Free text field for comments on the cell permit etc.

15-7.4.3 [bookmark: _Toc519257005]Product sections and Permit Records Fields
	:PRODUCT S101
	[List of licenced cell permits for ENC products]
	:PRODUCT S102
	[List of licence cell permits for bathymetric products]

15-4.5.17 Permit Record Fields
The header element in the PERMIT.XML file is followed by a single element called “products” which contains multiple “product” records, each of which contain the actual permits for those products. This allows a single PERMIT.XML file to contain permits for multiple products all destined for a single end user system.The Cell Permit Record is comprised of the following comma separated fields:
15-7.4.4 [bookmark: _Toc519257006]Definition of the Permit Record

The supplied cell permit is only guaranteed for the specified edition of the product.

15-4.5.18 [bookmark: _Ref390480044][bookmark: _Ref391844277]Definition of the Cell Permit
Each product element in the PERMIT.XML file contains a sequence of “permit” elements. These elements contain the actual permits for the products identified. The following table Table below defines the elementsfields contained in thecell permit elements with a definition of the purpose of each.
Table 15-6 – Permit Record elements

	Field
	Purpose
	Format

	Product Name:filename

	The fileproduct name as defined in S100_DatasetDiscoveryMetaData – filename. It enables Data Client systems to link the correct encryption key to the corresponding encrypted fileproduct name.
	Character string

	Edition
	The edition number of the product file as defined in S100_DatasetDiscoveryMetaData - editionNumber
	Character string

	Expiry Date:expiry

	This is the date when the Data Clients licence expires. Systems must prevent any new ENC cells, new editions or updates issuedcreated after this date from being installed.
	YYYYMMDD
(ISO-8601)

	Encrypted Cell Key (ECK)

	ECK contains the decryption key for the specified edition of the product file.
	32 digit hexadecimal number

15-7.4.5 [bookmark: _Toc519257007]An example permit.xml file
The Product Name and Expiry Date fields are separated by a comma (,) since the S-100 based product specifications will have different product naming conventions.

Note that the CRC Check Sum field defined in S-63e1.x has been removed since the PERMIT.TXT file will be digitally signed by the Data Server and provide the same level of integrity check as a CRC check sum.

[bookmark: _Ref390480073]Cell Permit Format
The Cell Permit shall be written as ASCII text with the following mandatory format and field lengths:

Example Cell Permit field:
NO4D0613,20181221234567890ABCDEF1234567890ABCDEF

Example Cell Permit record:
NO4D0613,20181221234567890ABCDEF1234567890ABCDEF,0,2,PRIMAR,Comments

15-4.5.19

<permit>
<header>
 <date>20180607 14:11:59</date>
 <dataserver>primar</dataserver>
 <version>1.0.0</version>
 <userpermit>80352805938502220302542</userpermit>
</header>
<products>
 <product id="S-101">
 <permit>
 	<filename>101GB40079ABCDEF.000</filename>
 	<edition>10</edition>
 	<expiry>20183112</expiry>
 	<encryptedKey>2011AA840D5C2204</encryptedKey>
 </permit>
 <permit>
 	<filename>101NO32802411223.001</filename>
 	<edition>5</edition>
 	<expiry>20180610</expiry>
 	<encryptedKey>2065AF8E5D5C1411</encryptedKey>
 </permit>
 </product>
 <product id="S-102">
 	<permit>
 	<filename>102NO329048208</filename>
 	<edition>1</edition>
 	<expiry>20183112</expiry>
 	<encryptedKey>3176BD8F5D6C0608</encryptedKey>
 </permit>
 </product>
</products>
<digitalSignature>
	<signedpublicKey id="primar" rootKey="IHO">MIIBtjCCASsGByqGSM44BAEwggEeAoGBAMwvcLfFri7k1qxaTwztsWCgcYqOhNpKx7vIzstyiVM+xZlfgljKDToRQito0AIy9nkfXCOXA1QzuUhMNoLim8s1oudLOeiDwjHq7fnm/HNQVLNKG9XFxOSChBz8AaknPTPnSRuTv1JiTKzH17CAGhkCFzqf7kK+AexqttT05skhAhUApHDc0AdnfLvcB6lQco/biZ7cv2UCgYBDWl36giFV2j4R2B7AxDmwwylcif7KiEeU9T+rrzQbQfIMCJeRLHVmNe0uO/L9YStBWNd+7vUIHQVzRNRmcODHlQTbojm8FSofNyOKc3LbQraAlMG/dcrDX7XafgFpdeCcyNyntD+7nd076zATYec5Ad4RJeo1Bq/UphJPYBSpNgOBhAACgYAIb5BNjP4YJOw/y7dcUS2k7aLt3YaWEM8sIyhOAGo4Z8bpzdDRkj5NYSYSzqKzHBTVRxPna4YKf7XvTQwflhWDDCo+yCuYirLFsmMJv5Mp8wL8+MXZNr4IA1k/xgTBCZfZPdbAaGpoQ4nmgt0tQyJBxck+M2jUjGbQ2VCECIsNQQ==
</signedpublicKey>
	<signature>
		<R>28F549549614ED4896BECBB056BE0F36ECA172EC</R>
		<S>399A5F5FC5B4DC52F1B750233F85AE3849227603</S>
	</signature>
</digitalSignature>
</permit>

DATA AUTHENTICATION

Introduction to Data Authentication and Integrity Checking
The digital signature technique used in the S-63 scheme uses a standard algorithm and key exchange mechanism widely used. S63 digital signatures use asymmetric public key algorithms within a PKI-like infrastructure scheme to unbreakably bind a data file with the identity of the issuer.

The scheme relies on asymmetric encryption[footnoteRef:1] of a checksum of a data file. By verifying the signature against the issuer’s public key, and also verifying the issuer’s public key against a top level identity the user is assured of the signer’s identity. A detailed explanation digital signatures is beyond the scope of this document and the reader is referred to the Digital Signature Standard (DSS), FIPS Pub 186 (www.itl.nist.gov/div897/pubs/fip186.htm) for a more detailed and accessible explanation. [1:
]

The scheme can be considered to have three distinct phases:
1) A Scheme Administrator (SA) verifies the identity of a supplier of products and provides the supplier with information to allow them to digitally sign their products.
2) A Data Server (e.g. RENC or VAR) issues products signed with their identity (and its verification by the SA).
3) The subsequent verification by the Data Client of the Data Server’s identity (by its association with the SA) and the integrity of the product data.

[image:]

Figur 3 Example of authentication process using ENC products

NOTES – ENC AUTHENTICATION PROCESSES
1. The Data Server’s Public Key and Self Signed Key (SSK) File are sent to the SA for validation when applying to join the IHO S-63 Protection Scheme.
2. If accepted the SA signs the Data Server’s SSK with its own private key to produce a SA signed Data Server Certificate which is then returned to the Data Server.
3. The SA Public Key is widely distributed and installed independantly in OEM systems.
4. SA Public and Private Key pairs must be different from all other Data Servers.
5. All Data Server Public and Private Keys must be unique to each other and the SA.

[image:]

NOTES – DATA AUTHENTICATION AND INTEGRITY CHECKING
If an OEM system is using the method depicted above, and if the SA Key Pair is different from the Data Server key pair, then it is able to authenticate and validate ENCs from Data Server 2 (or any other Data Server in the scheme) using the same SA public key.

1. Authentication: The OEM system uses the SA public key, previously installed independently of the supply media, to check the certificate part of the signature file to confirm that the supplier's public key in the certificate is valid. That is, the Data Server is a bona fide member of the scheme
2. Integrity Check: The OEM system uses the public key from the certificate to check the signature of the product file.

SA Verification
The OEM system needs to be able to verify that the products are from a bona fide source. It does this by ensuring that the Data Server’s public key provided within the signature of the product files can be validated against the SA’s public key.

The SA provides certificates to each Data Server in the scheme; each certificate is unique, the SA only has to do this task once for each Data Server when they join the scheme. To obtain a certificate, Data Servers generate a key pair and provide the SA with their public key (as a self signed certificate); the SA (using their existing key pair) uses their private key to sign the Data Server’s public key. The resulting certificate contains a signature of the Data Supplier’s public key. This certificate is then included with all the product´s signature files.
The SA makes its public key widely known to the OEM community and OEMs should provide a means for the user to load this independently of the product data.

Data Integrity
After the source of the product exchange set has been authenticated the OEM system then checks data integrity by validating the signature provided for each product by the Data Server.

The data server creates a digital signature for each cell which consists of the following two parts:
· The signature of the dataset [which is created using the Data Server’s private key, half of the data server key pair (in essence this is an encrypted checksum of the data) and is different for each product file]
· Their Data Server certificate (which remains constant).

The OEM system uses the Data Server’s public key that is included in the certificate to validate the data file signature (it decodes this data file signature and compares the checksum against the product cell). If this validation check is successful then it proves that the ENC has not been corrupted in any way and that the identity of the Data Server within the cell signatures is validated by the SA.

Digital Certificates (SA Authentication)
Certificates are digital files issued by a certification authority. They bind a specific public key together with other information to an individual or organisation. Certificates help prevent someone from using a fake public key to impersonate someone else. The scheme uses a chain of certificates, each one certifying the previous one until all parties are confident as to the identities in question. The SA certificate used by the IHO will be signed by an international certificate authority, and is the root certificate for the protection scheme.

The SA will issue a digital certificate to all approved Data Servers by signing the Data Server’s verified public key file. The following list of high level operations is performed in the issuing of digital certificates.

Scheme Creation
· SA creates a unique top level public and private key pair and and gets it signed by an international certificate authority.

Establishment of a Data Server
· Data Server creates a unique public and private key pair.
· Data Server creates a Self Signed Key (SSK) by signing own public key file with own private key.
· Data Server supplies the SSK to the SA by a trusted means.
· SA verifies the Data Server’s SSK using the Data Server’s pubic key.
· SA signs the verified Data Server public key file using the SA private key.
· SA supplies the Data Server with its own unique SA signed Data Server Certificate.

Creation of Signed Data Sets
· Data Server verifies the resultant certificate with the SA public key (supplied separately).
· Data Server stores verified certificate and uses it in the creation of the product´s signature files.

The format of the various files, certificates and signatures are described in more detail in section 5.4.

NOTE: the SA public key is made widely available to all interested parties, e.g. Data Servers, Data Clients and OEMs, in a number of ways, e.g. web, e-mail, etc.

The SA Public Key
The scheme requires that the SA public key is installed on the Data Client’s systems independently of the exchange or delivery of the products. This can be pre-installed by the OEM. However, the Data Client system must have a method of installing a new public key on the system in the case where a new one is issued by the SA.

If the user installs a new SA certificate or public key the system must confirm that a new one has been installed and provide appropriate information to the end-user.

Should the system report an authentication error during the loading process it should alert the user to the possibility that the SA may have changed the public key. The end-user should try to obtain and install the updated version of the SA certificate.

Is it realistic to assume that other domain coordinators like IALA will sign their member organisations public key?

New Data Servers
The IHO will establish the identity of any organisation or commercial company wishing to join the protection scheme as a Data Server. If the SA revokes a Data Server Certificate, it will inform all Data Servers and Manufacturers about the change.

Digital Signatures (Verify Data Integrity)
A digital signature is an electronic signature that can be used to authenticate the identity of the sender of a message or the signer of a document, and to ensure that the original content of the sent message is unchanged. Digital signatures are portable, easily verified and cannot be forged.

It is also acceptable for data producers (HOs) or other Data Server organisations (e.g. RENC/VAR) to use digital signatures to maintain provenance and data integrity between them in the delivery of products. All product files will always have a single unique digital signature associated with it.

An exchange set may contain product file signatures issued by different Data Servers and therefore each product file must be authenticated individually.

It is recommended that all files comprising the product exchange and service access should have an associated digital signature. For all product files included in an exchange set, fields have been defined in S-100 to specify that signatures are being used and to store the digital signature. Some files will however not be defined in the catalogue directory, and the method to provide a digital signature is to create a file with the same name as the source file but with the extension .SIGN.

Example:	PERMIT.TXT		Original source file
	PERMIT.SIGN	File containing the digital signature

Technical Overview of Digital Signatures
Data authentication is provided using a digital signature compliant with the Digital Signature Standard (DSS) [2]. The DSS uses the Secure Hash Algorithm (SHA256) [14] to create a message digest (hash) that are 256 bits. The message digest is then input to the Digital Signature Algorithm (DSA) [2] to generate the digital signature for the message using an asymmetric encryption algorithm and the ‘private key’ of a key pair. The DSA keylength is 1024 bits. Asymmetric algorithms have the property that data encrypted using the ‘private key’ of the key pair can only be decrypted using the ‘public key’ of the key pair.

A consequence of encrypting the message digest with the private key is that anyone who has the public key (which as its name suggests can be made public) can decrypt and verify the message digest.

The SA Digital Certificate (X509v3) Format
The SA Digital Certificate will be in X509v3 format [4] and represents a DSA Public Key of length 1024 bits and provided as PEM encoded text (base 64). The SA Digital Certificate will always be available in a file called IHO.CRT. The IHO.CRT file is available from IHO at http://www.iho.int.

(example to be completed)

Digital Signature Encoding
All files included in the exchange set will have their signatures encoded in either the S100_DatasetDiscoveryMetaData-digitalSignatureValue or S100_SupportFileDiscoveryMetadata-digitalSignatureValue.

The digitalSignatureReference field shall be encoded S63e2.0.0.
The digitalSignature field shal be encoded 1 (true).

There will be additional files associated with an exchange set which will not have its digital signature value encoded; e.g. S102ed2.CAT containing the exchange catalogue. Its digital signature will be encoded in a separate file S102ed2.SIGN located in the same folder as the source file.

Other files included as part of service delivery will have its digital signature encoded in a .SIGN file. Example: PERMITS.TXT file will have its signature in PERMITS.SIGN

Shall we establish a possibility to support resigning of signatures?

Is it still a need to support:
· PRODUCTS.TXT as part of S63e2?
· SERIAL.ENC as part of S63e2?
· STATUS.LST as part of S63e2?
· README.TXT as part of S63e2?
· Specify a media structure as part of S63e2?
·

[bookmark: _Toc519257008]Data authentication

This section specifies the mechanisms, structures and content required for the implementation of copy protections and/or authentication methods by S-100 product specifications. It defines standardized methods for the encryption of file based components of datasets as well as feature and portrayal catalogues. Algorithms and methods for digital signature implementation are defined as well as the surrounding infrastructure required for key management and identity assurance within the IHO Data Protection Scheme.

15-8.1 [bookmark: _Toc519257009]Introduction to Data Authentication and Integrity Checking
The digital signature technique in S-100 uses a standard algorithm and key exchange mechanism widely available and used. Digital signatures use asymmetric public key algorithms within a PKI-like infrastructure scheme to unbreakably bind a data file with the identity of the issuer.

The scheme relies on asymmetric encryption[footnoteRef:2] of a checksum of a data file. By verifying the signature against the issuer’s public key, and also verifying the issuer’s public key against a top level identity, the user is assured of the signer’s identity. A detailed technical description of digital signatures is beyond the scope of this document and the reader is referred to the Digital Signature Standard (DSS – FIPS Publication 186) for a more detailed and accessible explanation. This Part of S-100 assumes a basic knowledge of digital signature terms and the operation of PKCS authentication schemes. [2: Asymmetric cryptography relies on algorithms where encryption and decryption take place with different cryptographic keys. Therefore one person can encrypt data and make available a decryption key for others to decrypt it. These keys are referred to as the “private key” and the “public key”, collectively known as a “key pair”
]

The IHO data protection scheme can be considered to have three distinct phases:
4) A Scheme Administrator (SA) verifies the identity of a Data Server of S-100 products and provides the supplier with information to allow them to digitally sign their products.
5) A Data Server issues products signed with their identity (and their identity’s verification by the SA).
6) The subsequent verification by the Data Client of the Data Server’s identity, its association with the SA, and the integrity of the product data.

It should be noted that the S-100 digital signature mechanism is not intended solely for S-100 product specifications’ data files. It is possible to both encrypt (and issue permits for) and digitally sign any file based data and it is envisaged that the mechanisms described in this Part can be used to sign both Feature and Portrayal Catalogues. This will be valid for Feature and Portrayal Catalogues issued by the IHO.

[image:]

Figure 15-5 – Example of authentication process using ENC products

15-8.2 [bookmark: _Toc519257010]Data Protection Scheme setup, Data Server signup and authentication sequence

The following is a list of the steps taken by each body in the Data Protection Scheme during the digital signing of data files.

6. Scheme Creation and Setup (once only, at the instigation of the Data Protection Scheme):
a. The SA creates their own public/private key pair and self-signs it.
b. The SA puts their self-signed Public Key (also known as their “certificate”) in the public domain.
c. The SA Public Key is embedded where required in OEM systems.
7. Data Server setup (once only):
a. The Data Server creates a Public and Private Key pair.
b. The Data Server signs their Public Key (with their Private Key) creating a Self Signed Key (also sometimes called a “certificate signing request”).
c. The Data Server’s Self Signed Key (SSK) is sent to the SA for validation when applying to join the IHO S-100 Data Protection Scheme. Any other requirements and duties within the Data Protection Scheme are issued to the prospective Data Server at this stage.
8. Data Server Identity Verification:
a. If accepted the SA verifies the Data Server’s SSK and identity.
b. The SA signs the Data Server’s SSK with its own Private Key to produce an SA signed Data Server Certificate.
c. The Data Server certificate is then returned to the Data Server.
d. The Data Server verifies that the certificate signs their Public Key against the SA Public Key.
9. The Data Server can then produce digital signatures of data files. Digital signatures of Feature and Portrayal Catalogues can also be produced by scheme participants as required.

[image:]

Figure 15-6 – Data authentication and integrity checking

15-8.3 [bookmark: _Toc519257011]Data Formats and standards for digital signatures, keys and certificates

The following categories of content are required for data authentication:

1. Key pairs, Private and Public Keys. These are all PEM encoded DSA keys together with their DSA key parameters. These keys should all be 1024 bits long.
2. Certificate signing requests and digitally signed Public Keys. When a Public Key is itself digitally signed it is referred to as a “certificate” (because the Public Key is “certified” by the use of the Private Key to authenticate it). When the Public Key is signed by its corresponding Private Key it is referred to as a “self-signed” certificate. These are laid out as X.509 records and can be either DER or PEM encoded to be sent to the SA for signing. When embedded within XML files keys should be PEM encoded so that the plain text can be inserted as an XML element.
3. The digital format of the SA signed) Public Keys (“certificates”) is X509v3 format encoded as PEM.

PEM format defines a textual encoding of the multiple large numbers required by the DSA algorithm (along with the DSA parameters required by the DSA algorithm). PEM encoding (originally developed for email encoding but used extensively in the encryption community for encoding of long integers used for keys and digital signatures) allows the embedding of Public Keys and Data Server certificates within XML files for permit file XML creation, the creation of catalogue and support file metadata and the production of digital signatures of Portrayal and Feature Catalogues. Digital Signatures of S-100 data files must be embedded in the catalogue metadata and serve the dual purpose of a checksum against the unencrypted data file and the authentication of its source. Therefore they must be produced prior to any encryption mechanism as copy protection is itself optional.

The SA Certificate represents a DSA Public Key of length 1024 bits provided, as stated, as a PEM encoded text file. The SA Certificate will always be available in a file called IHO.PEM. The IHO.PEM file is available from IHO at http://www.iho.int.

Digital Signatures in S-100 are implementations of the Digital Signature Standard (DSS). The DSS uses the Secure Hash Algorithm (SHA256) to create a message digest (hash) of the file content that are 256 bits long. The message digest is then input to the Digital Signature Algorithm (DSA) to generate the digital signature for the message using an asymmetric encryption algorithm and the ‘Private Key’ of the signer’s key pair. The DSA key length is 1024 bits.

In the DSA algorithm a signature is a sequence of two integers. By convention these are referred to as R and S (an “R,S pair”). The format of digital signatures when embedded in XML files is as follows:
<digitalSignature>
302C021433796C6647CC1C55A67DC72FA7C6E157A6594B2B02145D3768B44F3A6ABA11A77178B738AD3B6A0DE344
</digitalSignature>
The R,S pair are represented by its hexadecimal encoding (digits 0-9, letters A-F).

15-8.4 [bookmark: _Toc519257012]Creation of key material and certificate signing requests (signed Public Keys)

15-4.5.20 [bookmark: _Ref391840794][bookmark: _Ref391845558]
The commonly used “openssl package” provides a public domain, open source tool for production of key material in the required open standards specified within this Part.

Table 15-7 below shows basic command line examples for creation of the Public and Private Key pairs, certificate production and digital signing of data files.
15-8.4.1 [bookmark: _Toc519257013]SA setup

This procedure is performed once only. The command SA-1 in the Table sets up a new set of DSA parameters and the SA-2 command creates the SA’s “root certificate” - their self-signed key which self-certifies their identity.

When a Data Server creates an X509 certificate signing request (CSR), the SA signs it using command SA-3. This creates a SHA256 signed version of the Data Server’s Public Key. The PEM encoded version of the “signedicds.crt” file is what is embedded in both permit files and catalogue metadata as the “Data Server certificate”.
Table 15-7 – Creation of Public and Private Key pairs – basic commands

	Task
	Command

	SA-1 create DSA parameters
	openssl dsaparam 1024 -out dsaparam.txt

	SA-2 create SA root key and self signed root certificate
	openssl req -x509 -sha256 -nodes -days 365 -newkey dsa:dsaparam.txt -keyout iho.key -out iho.crt

	SA-3 sign a verified certificate signing request
	openssl x509 -req -in CSR.csr -sha256 -CA iho.crt -CAkey iho.key -CAcreateserial -out signedicds.crt

15-8.4.2 [bookmark: _Toc519257014]Data Server setup

The Data Server sets up their identity with the SA by using the once only process described by commands DS-1 to DS-5. This delivers an SA signed certificate to the Data Server which is included with every delivery of signed material to the Data Client.
Table 15-8 – Data Server setup –commands

	Task
	Command

	DS-1 Create DSA parameter file
	openssl dsaparam 1024 -out ICDSparam

	DS-2 create a Data Server key

DS-3 Split Public Key from Private Key
	openssl req -out CSR.csr -new -newkey dsa:ICDSparam.txt -nodes -keyout icds.key

openssl dsa -outform pem -in icds.txt -out icdspubkey.txt -pubout

	DS-4 Create a certificate signing request
	openssl req -out CSR.csr -key icds.key -new

	DS-5 Verify received certificate from SA
	openssl verify -verbose -CAfile iho.crt signedicds.crt

	DS-6 Make data file

DS-7 Sign data file

DS-8 Create a hexadecimal signature

DS-9 Verify binary signature
	echo "hello world" > hw.txt

openssl dgst -sha256 -sign icds.key hw.txt > hw.sig

openssl dgst -sha256 -hex -sign icds.key hw.txt

openssl dgst -sha256 -verify pubkey.txt -keyform pem –signature hw.sig hw.txt

The commands DS-6 to DS-9 show how a simple text file “hello world” can be created, signed with the Data Server’s private key to create a DSA-SHA256 signature, and then verified. DS-8 creates a hexadecimal format signature which can be translated into the following XML for embedding in an XML file (either PERMIT.XML or the catalogue metadata as required.

<digitalSignature>
302C021433796C6647CC1C55A67DC72FA7C6E157A6594B2B02145D3768B44F3A6ABA11A77178B738AD3B6A0DE344
</digitalSignature>

15-8.5 [bookmark: _Toc519257015]Example Public Key

15-4.5.21
The following is an example of a PEM encoded public key.

-----BEGIN PUBLIC KEY-----
MIIDSDCCAjoGByqGSM44BAEwggItAoIBAQD9Pm/tjwRDRMYc1FzABkQqXKpTptvQ
9EVDdl8VJSCC82hdyJQDeS1DyLCp9LNTfdp+2lkMAcSUSzBJdRUQMvww78/L/zyH
D/owQKlbvyYwUfcAfJ1LgA/5cFzL174H/XRpDuWlCKRoq959QhVW6wY5PMKHAGpx
gpzb5SiqukxqWw07XllcQqPnvIdO1OeeCTOYD7WIPS1HXwCkcP9Bcd4dfVolfDvP
azsDavtZ48qcxU53XS+W3M646qbpueFLQ66kQ1Lt0XEopJeWnxjJISGomN1vLhFx
eY0uszEwBXoG8q6T/Cf8WNBnAfj4uq1/vAiwNTNeANnDcNPtu9mlK5nxAiEAtcfr
VKQyMjfcJUpl1NeGX/qYnzXmABiAMBjqgRS5mBkCggEBAKCTVhDlBm6jADkYXmxv
HjT9ry33zNJbQIAvycSUdIw8NYFVHSDqR8hILVf9LYzbrhENu0ffHdxgImA0GZJl
duxVoxhdMHOsdKGQOlVnzv7RB961S3F4Ho46r7MVUb6z7F6JZ7oFeWt5XSlYUlbr
ecG9cXi5vfDC/HT5sR4353SkudnYaRLdcDbpc0aHqVD6DyaqockyAMXDzTHEjlK9
Lw2+mWeKqIzX7SoBfb1N0DU0Ot6R5Ni0TdL0q59rUosu7UbvIFmOd3QQxGYk0Ro/
M+9drVaEAK1zJfIvVjKuLQQPDGMhMfOktXLWi3D6UXPfRBdJSEn8PjhkmrKUNeCo
+RoDggEGAAKCAQEAkfEyvn8ALb3hAnWOmikUgjuwTxMq58/aswh4LXaIaG3UtpkL
SjnO31VH/3NG31ywAatJsmraGUijiIq4JR1m8DTI8P3lxeHcqB3ln1XYLYUw3pp3
8ABbGjuNJ4vTP+lwgOg9DPqpKsmJEb6cMtcFf7qSpMy9Hx76SO6z46r0xdMwoOkN
bHr3JNKxu9gLQZ3MY8AT7nhMcQRraO38KVahSadp35zDshlLHEd8HcCetrj1AFnN
m2AxTXeNzaLqAM6INlHZXHXO5UTu1EZW4ES4F7hdp6NwQV5ijm2IFeZg/KsuOiCW
ISLCa5sU9zw9MLrHBOF1ZqyUdBXkn4naNCZg5Q==
-----END PUBLIC KEY-----

15-8.6 [bookmark: _Toc519257016]Creation of digital signatures by a Data Server

15-4.5.22

The Data Server creates a digital signature for the required data files using the DSA algorithm and their Private Key, see clause 15-8.3.

All files included in an S-100 exchange set must have their signatures encoded in either the S100_DatasetDiscoveryMetaData-digitalSignatureValue or S100_SupportFileDiscoveryMetadata-digitalSignatureValue.

The digitalSignatureReference field must be encoded “S100p15e4.0.0”.
The digitalSignature field must be encoded 1 (true).

The digital signature is embedded in the catalogue metadata (and support file metadata) in two areas:

· The DSA-SHA256 digital signature of the data file, the R,S pair is embedded within the appropriate XML element according to the following XML snippet:
[bookmark: _Hlk518039359]<digitalSignature>
302C021433796C6647CC1C55A67DC72FA7C6E157A6594B2B02145D3768B44F3A6ABA11A77178B738AD3B6A0DE344
</digitalSignature>

· Their Data Server certificate (which remains constant). This is encoded as per clause 15-8.3 and should be embedded in the header of the catalogue metadata. This certificate provides the Public Key against which the digital signature (and the file content) is verified.

Another example encoding of a digital signature is within the PERMIT.XML file which holds a signature of the entire permit file content created by the Data Server issuing the permit.

<digitalSignatureValue>
	<signedpublicKey id="primar" rootKey="IHO">MIIBtjCCASsGByqGSM44BAEwggEeAoGBA
MwvcLfFri7k1qxaTwztsWCgcYqOhNpKx7vIzstyiVM+xZlfgljKDToRQito0AIy9nkfXCOXA1QzuUhMNoLim8s1oudLOeiDwjHq7fnm/HNQVLNKG9XFxOSChBz8AaknPTPnSRuTv1JiTKzH17CAGhkCFzqf7kK+AexqttT05skhAhUApHDc0AdnfLvcB6lQco/biZ7cv2UCgYBDWl36giFV2j4R2B7AxDmwwylcif7KiEeU9T+rrzQbQfIMCJeRLHVmNe0uO/L9YStBWNd+7vUIHQVzRNRmcODHlQTbojm8FSofNyOKc3LbQraAlMG/dcrDX7XafgFpdeCcyNyntD+7nd076zATYec5Ad4RJeo1Bq/UphJPYBSpNgOBhAACgYAIb5BNjP4YJOw/y7dcUS2k7aLt3YaWEM8sIyhOAGo4Z8bpzdDRkj5NYSYSzqKzHBTVRxPna4YKf7XvTQwflhWDDCo+yCuYirLFsmMJv5Mp8wL8+MXZNr4IA1k/xgTBCZfZPdbAaGpoQ4nmgt0tQyJBxck+M2jUjGbQ2VCECIsNQQ==
</signedpublicKey>
	<digitalSignature>
302C021433796C6647CC1C55A67DC72FA7C6E157A6594B2B02145D3768B44F3A6ABA11A77178B738AD3B6A0DE344</digitalSignature>
</digitalSignatureValue>

As can be seen from the XML taken from the PERMIT.XML the signedPublicKey represents the Data Server certificate and the <digitalSignature> element contains the R,S pair which define the signature. Data Client systems shall only verify the authenticity of the permit file using the header and product elements found in the PERMIT.XML file.

15-8.7 [bookmark: _Toc519257017]Verifying Data Integrity and Digital Identity with an S-100 digital signature

15-4.5.23

Digital signature verification is an algorithm which operates on three independent pieces of data (all formatted in line with this Part of S-100):

1. Some content which requires validation;
2. A Public Key, suitably encoded. In the DSA algorithm adopted this Public Key is composed of a set of DSA parameters together with a Public Key;
3. A signature. In the DSA algorithm a signature is composed of two numbers, by convention these are referred to as R and S (an R,S pair).

A signature verification process identifies whether the R,S pair authenticate the content against the given Public Key. This can only result in a true or false result.

DSA digital signature verification achieves two results:

· Authentication: The implementing system verifies the Data Server Public Key (“content”) and the signature in the Data Server certificate (“signature”) against the SA Public Key (“Public Key”) to confirm that the supplier's Public Key in the certificate is valid and that the Data Server is a bona fide member of the S-100 Data Protection Scheme.
· Integrity Check: The implementing system verifies the data file signature (“signature”) and the Data Server Public Key in the Data Server certificate (“Public Key”) against the data file (“content”). This verifies the content of the data file.

If this validation check is successful then it proves that the data file has not been corrupted in any way and that the identity of the Data Server within the cell signatures is validated by the SA’s identity as defined in the SA root certificate.

[bookmark: _Toc519257018]Glossary of S-100 Data Protection Scheme and computing terms
For a list of general abbreviations used throughout S-100, see Part 0, clause 0-2. For a list of general terms and definitions used throughout S-100, see Annex A.

15-8.5

[14] 	Secure Hash Standard (SHS), FIPS-PUB 180-4, National Institute of Standards and Technology, https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

15-8.6

Table 15-9 – S-100 Data Protection Scheme terms

	
	

	AES
	Advanced Encryption Standard, encryption algorithm used in the scheme

	Data Permit
	File containing encrypted product keys required to decrypt the licensed products. It is created specifically for a particular user

	Data Client
	Term used to represent an end-user receiving the encrypted ENC information. The Data Client will be using a software application (for example ECDIS) to perform many of the operations detailed within the scheme. Typically, an ECDIS user

	Data Server
	Term used to represent an organization producing encrypted data files or issuing Cell Permits to end-users

	M_ID
	The unique identifier assigned by the SA to each manufacture. Data Servers use this to identify which M_KEY to use when decrypting the Userpermit

	M_KEY
	ECDIS manufacturer’s unique identification key provided by the Scheme Administrator to the OEM. It is used by OEMs to encrypt the HW_ID when creating a userpermit

	HW_ID
	The unique identifier assigned by an OEM to each implementation of their system. This value is encrypted using the OEM’s unique M_KEY and supplied to the data client as a userpermit. This method allows data clients to purchase licences to decrypt ENC cells

	PKCS
	Public Key Cryptography Standards

	IV
	Initialization Vector used by the AES-CBC encryption algorithm

	SA
	Scheme Administrator. IHO responsible for maintaining and coordinating all operational aspects and documentation of the protection scheme

	SHA
	Secure Hash Algorithm

	SSK
	Self Signed Key (Self Signed Certificate File)

	User Permit
	Encrypted form of HW-ID uniquely identifying the Data Client system

Table 15-10 – Computing terms

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	CRC
	Cyclic Redundancy Check

	Dongle
	Sometimes referred to as a hard lock device, It is a hardware device supplied by the OEMs that has the unique system identifier (HW_ID) stored security within

	XOR
	Exclusive OR

1
Part 15 – Data Protection Scheme
32
2
Part 15 – Data Protection Scheme
31
2
Part 15 – Data Protection Scheme
[bookmark: _Toc474485646][bookmark: _Toc519257019]Appendix 15-A Encryption Examples (informative)

[bookmark: _Toc519257020]Converting bit string to an integer number
A sequence of bits {b1, b2, …, bn} defines an unsigned integer I number by:
	(1a)
or
	(1b)
The bit b1 is the most significant bit and the bit bn is the least significant bit of the sequence. The integer will be in the range: .
In most implementations the bit string will be organized as a sequence of bytes {B0,B1,…,Bm}, with, with and 	(2)
A possible implementation of converting such a byte sequence to an integer number is given by the following pseudo code:
Input: Byte sequence B = {B0, B1,…,Bm}
Output: non-negative integer number I
Let I = 0
for k from 0 to m
I = I *28
I = I + Bk
Return I

[bookmark: _Toc519257021]Converting an integer number to a bit string
Formula 1a and 1b describe how a bit string is related to a corresponding (non-negative) integer number. Assuming that the bit string is organized as a sequence of bytes as defined by (2) the following algorithm shows how to transform an unsigned integer number to a bit string.
Input: a non-negative integer number I with 0<=I<2n
Output: a sequence of bytes B of length
Let B be an empty sequence
If I = 0
Append the byte b=0 to B
Else
While I > 0 do
Let
Prepend c to B
Let
While the length of B is < m
Prepend 0 to B
Return B
Note that the division by 28 is equivalent by the bit shift operation I >> 8
[bookmark: _GoBack]
[bookmark: _Toc519257022]Converting an unsigned integer number to a hexadecimal text representation
The following pseudo code shows how to convert an unsigned integer number to its hexadecimal text representation. In this text representation each digit can have 16 different values. The integer I is defined as:
	(3)

	Digit d
	Bit string
	Character
	ASCII Code (Hex)
	ASCII Code (dec)

	0
	0000
	‘0’
	30
	48

	1
	0001
	‘1’
	31
	49

	2
	0010
	‘2’
	32
	50

	3
	0011
	‘3’
	33
	51

	4
	0100
	‘4’
	34
	52

	5
	0101
	‘5’
	35
	53

	6
	0110
	‘6’
	36
	54

	7
	0111
	‘7’
	37
	55

	8
	1000
	‘8’
	38
	56

	9
	1001
	‘9’
	39
	57

	10
	1010
	‘A’
	41
	65

	11
	1011
	‘B’
	42
	66

	12
	1100
	‘C’
	43
	67

	13
	1101
	‘D’
	44
	68

	14
	1110
	‘E’
	45
	69

	15
	1111
	‘F’
	46
	70

The algorithm is:
Input: An unsigned integer number I
Output: The hexadecimal text representation S
Let S be an empty sequence of characters.
If I = 0
Let S = “0”
Else
While I>0
Let c be the character corresponding to the value
Prepend c to S
Let
Return S

[bookmark: _Toc519257023]Converting a hexadecimal text representation to an unsigned integer number
The following algorithm shows how to convert a hexadecimal text representation of an unsigned integer number to the integer number itself.
Input: A hexadecimal text representation S of an unsigned integer number S = {s1,s2,…,sm}
Output: An unsigned integer number I
Let I = 0
For I = 1 to m
I = I*16
I = I + d; where d is the digit value corresponding to the character Si
Return I

[bookmark: _Toc519257024]Details on the encryption algorithm
For encryption of permits and data files the Advanced Encryption Standard (AES) block cipher algorithm is used. This is a symmetric-key algorithm. This means that the same key is used for encryption and decryption. The algorithm defines how one block of plain text is converted to one block of cipher text and vice versa. The block size of the AES is always 16 Bytes (128 bit). The key length can be chosen from 128 bit, 192 bit or 256 bit. The corresponding variants are named AES-128, AES-192, or AES-256.
The AES algorithm can only encrypt one block of plain text. For larger messages a block cipher mode of operation has to be used. This Protection Scheme chooses the Cipher Block Chaining (CBC) mode for encryption of more than one block of data. In this mode of operation it is required that the length of the plain text must be an exact multiple of the block size; padding is required.
The padding methods that will be used is described in PKCS#7 [12]. It adds N bytes to the message until its length is a multiple of 16 Bytes. The value of each byte is N. Note that if the original plain text has already a multiple of 16 as length a full block of 16 bytes each having the value of 16 must be added.

	Plain text
	Padded Plain Text

	xx
	xx 0F 0F 0F 0F 0F 0F 0F
0F 0F 0F 0F 0F 0F 0F 0F

	xx xx
	xx xx 0E 0E 0E 0E 0E 0E
0E 0E 0E 0E 0E 0E 0E 0E

	xx xx xx
	xx xx xx 0D 0D 0D 0D 0D
0D 0D 0D 0D 0D 0D 0D 0D

	xx xx xx xx
	xx xx xx xx 0C 0C 0C 0C
0C 0C 0C 0C 0C 0C 0C 0C

	xx xx xx xx xx
	xx xx xx xx xx 0B 0B 0B
0B 0B 0B 0B 0B 0B 0B 0B

	xx xx xx xx xx xx
	xx xx xx xx xx xx 0A 0A
0A 0A 0A 0A 0A 0A 0A 0A

	xx xx xx xx xx xx xx
	xx xx xx xx xx xx xx 09
09 09 09 09 09 09 09 09

	xx xx xx xx xx xx xx xx
	xx xx xx xx xx xx xx xx
08 08 08 08 08 08 08 08

	xx xx xx xx xx xx xx xx
xx
	xx xx xx xx xx xx xx xx
xx 07 07 07 07 07 07 07

	xx xx xx xx xx xx xx xx
xx xx
	xx xx xx xx xx xx xx xx
xx xx 06 06 06 06 06 06

	xx xx xx xx xx xx xx xx
xx xx xx
	xx xx xx xx xx xx xx xx
xx xx xx 05 05 05 05 05

	xx xx xx xx xx xx xx xx
xx xx xx xx
	xx xx xx xx xx xx xx xx
xx xx xx xx 04 04 04 04

	xx xx xx xx xx xx xx xx
xx xx xx xx xx
	xx xx xx xx xx xx xx xx
xx xx xx xx xx 03 03 03

	xx xx xx xx xx xx xx xx
xx xx xx xx xx xx
	xx xx xx xx xx xx xx xx
xx xx xx xx xx xx 02 02

	xx xx xx xx xx xx xx xx
xx xx xx xx xx xx xx
	xx xx xx xx xx xx xx xx
xx xx xx xx xx xx xx 01

	xx xx xx xx xx xx xx xx
xx xx xx xx xx xx xx xx
	xx xx xx xx xx xx xx xx
xx xx xx xx xx xx xx xx
10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10

xx = Arbitrary Bytes
In CBC mode each block of plain text is XORed with the previous cipher text block before being encrypted. An initialization vector IV is required for the first block. The mathematical formula is:
 	(3a)
 	(3b)

Ci is the ith block of cipher text; Pi is the ith block of plain text. EK is the encryption method of AES encrypting exactly one block. IV is the initialization vector, and is the XOR operation.
Decryption is defined as:
 	(4a)
 	(4b)

DK is the decryption method of AES decrypting exactly one block.
Normally the initialization vector must be transferred from the encryption to the decryption. However an incorrect IV at the decryption will only corrupt the first plain text block. This can be easily recognised from the formulas; each plain text block depends only on two adjacent cipher text blocks.
This behaviour will be used in the following modification of the CBC mode.
On encryption of data files the plain text will be prepended by a single random block. Then encryption is done as normal using a random initialization vector. This vector does not have to be transferred to the decryption at the Data Client.
On decryption an arbitrary initialization vector can be used and after normal CBC decryption the first plain text block is discarded. The rest is the original plain text data file.
This procedure does not require the transport of the IV or the use of a predicted IV within the data permit. The first option would complicate the process of data transfer and the second would make it vulnerable to attacks especially if the first blocks of plain text are commonly known (as ISO/IEC 8211 Data Descriptive Records).

[bookmark: _Toc519257025]Examples on AES
The following examples are taken from the FIPS documentation.
Encrypting and decrypting of exactly one block:
Key128: 	K = {00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0a, 0b, 0c, 0d, 0e, 0f}
Plain Text:	P = {00, 11, 22, 33, 44, 55, 66, 77, 88, 99, aa, bb, cc, dd, ee, ff}
Cipher Text: 	C = {69, c4, e0, d8, 6a, 7b, 04, 30, d8, cd, b7, 80, 70, b4, c5, 5a}

Key192: 	K = {00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0a, 0b, 0c, 0d, 0e, 0f,
	 10, 11, 12, 13, 14, 15, 16, 17}
Plain Text:	P = {00, 11, 22, 33, 44, 55, 66, 77, 88, 99, aa, bb, cc, dd, ee, ff}
Cipher Text: 	C = {dd, a9, 7c, a4, 86, 4c, df, e0, 6e, af, 70, a0, ec, 0d, 71, 91}

Key256: 	K = {00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0a, 0b, 0c, 0d, 0e, 0f,
	 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1a, 1b, 1c, 1d, 1e, 1f}
Plain Text:	P = {00, 11, 22, 33, 44, 55, 66, 77, 88, 99, aa, bb, cc, dd, ee, ff}
Cipher Text: 	C = {8e, a2, b7, ca, 51, 67, 45, bf, ea, fc, 49, 90, 4b, 49, 60, 89}

The following example documents the modified CBC mode:
Key128: 	K = {12, 34, 56, 78, 9a, bc, de, f0, 12, 34, 56, 78, 9a, bc, de, f0}
Plain Text: 	P = {fe, dc, ba, 98, 76, 54, 32, 10}

Plain Text after prepending a random block:
P’ = {48, d2, 4e, 7c, 00, 2f, 67, 4e, 93, 1d, ee, 27, 42, 17, a3, 4c}
 {fe, dc, ba, 98, 76, 54, 32, 10}

Plain Text (padded):
P” = {48, d2, 4e, 7c, 00, 2f, 67, 4e, 93, 1d, ee, 27, 42, 17, a3, 4c}
 {fe, dc, ba, 98, 76, 54, 32, 10, 08, 08, 08, 08, 08, 08, 08, 08}

Initialization vector (random):
IVE = {45, b5, 00, d7, 28, 39, 42, bb, 85, 61, 28, d5, 97, 15, ca, 25}

Cipher Text using CBC Mode:
C = {ba, 45, ee, 06, 02, a6, 29, 35, 7a, e3, 90, 2c, 22, 4d, d9, d5}
 {dd, 3b, 07, 3b, 84, 7f, 4d, 43, 28, 71, 19, 43, 97, d9, a6, 03}
For the decryption an arbitrary initialization vector can be used e.g.
IVD = {00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00}

Decryption using the CBC will give the following plain text. The bytes added by the padding are already removed:
PD‘ = {0d, 67, 4e, ab, 28, 16, 25, f5, 16, 7c, c6, f2, d5, 02, 69, 69}
 {fe, dc, ba, 98, 76, 54, 32, 10}

Note that the first block is different from the one in P‘.
After discarding the first block the original message is recovered.
PD = {fe, dc, ba, 98, 76, 54, 32, 10} = P

[bookmark: _Toc519257026]Diagrams on HW_ID encryption
HW_ID (128 bit)
AES-128 encryption
Encrypted HW_ID (128 bit)
M_KEY (128 bit)

HW_ID (128 bit)
AES-128 decryption
Encrypted HW_ID (128 bit)
M_KEY (128 bit)

[bookmark: _Toc519257027]Diagrams on Data key encryption
Data_Key (128 bit)
AES-128 encryption
Encrypted Data_Key (128 bit)
HW_ID (128 bit)

Data_Key (128 bit)
AES-128 decryption
Encrypted Data_Key (128 bit)
HW_ID (128 bit)

[bookmark: _Toc519257028]Example of a user permit
HW_ID : 123456789ABCDEF0123456789ABCDEF0
M_KEY : 112233445566778899AABBCCDDEEFF00
M_ID : ABXY
Encrypted HW_ID: 4C329B7E79819AEE47E0C7AB79412EFF
CRC32 Check Sum: 19CB1B5C
User Permit: 4C329B7E79819AEE47E0C7AB79412EFF19CB1B5CABXY

[bookmark: _Toc519257029]Example of an encrypted data key
HW_ID : 123456789ABCDEF0123456789ABCDEF0
Data Key : FEDCBA9876543210FEDCBA9876543210
Encrypted Data Key: CE39C3D515539299F407DC66200B3E1D

[bookmark: _Toc519257030]Example of a Data Permit
TBD

[bookmark: _Toc519257031]Example of HW_ID
TBD

[bookmark: _Toc519257032]Example of Permit File (XML)
TBD

image1.png
Scheme
Administrator
(IH0)

Domain
Coordinator

T

Data Server 1

Data Server 3

Data Server2

image2.png
Plaintext Plaintext Plaintext

[Ennnnannannns] [Ennnnannannss] [Ennnnannannss]
Initialization Vector (IV) %} %}
LT
Block cipher Block cipher Block cipher
! !
; ; |
[Ennnnnnnnnnns] [Ennnnnnnnnnns] [Ennnnnnnnnnns]
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

image3.png
Ciphertext Ciphertext Ciphertext

[Enannnsnnnn] [Enannnsnnnn] [Enannnsnnnn]
; ;
¥ ¥ |
Block cipher Block cipher Block cipher
Key —=| gecryption Key —=| gecryption Key —=| gecryption
Initialization Vector (IV) %} %}
[nansnnnnnss]
[Enannnunnnnns] [Enannnunnnnns] [Enannnunnnnns]
Plaintext Plaintext Plaintext

Cipher Block Chaining (CBC) mode decryption

image4.png
SA OEM DATA CLIENT
B — e R
B T S e
e e B
y
- T
e
ProvidosLisof il T
joEM M 80 M_KEY to obtain
o e e
e :
e
s !
_ Yo
e e
T | St
R ST
Ltroreon | pne
i i
oo T T
T I -
S Pl
e s b

ECS/ECDIS

image5.png
DATA SERVER 1 (DS 1) Scheme

‘Administrator
(8A

e

=t

il

DATA SERVER 2 (DS 2)

SO 0
ALIDATES D3|
PRIVATE | PUBLIC 1 |
CREE o |
|
0 1 CERTIFICATE {
o1 | o1 e |
PUBLIC | SASIGNED %

e rcrer| ("2) ‘
[eNcoaTA| [“son PRIVATE Son | [encoatal
FILES (—MOATAFILE| JOATAFILE fe-{ FILES
ceus) | | e ce || ces)

ENG SIGNATURE FILE ENG SIGNATURE FILE

CELL | SASIGNED
|SIGNATURE | CERTIFICATE

RENC 2
CDIOVD

ECSIECDIS

image6.png
DATA SERVER 1 Exchange Set

ENC CELL FILE, e.g. GB40162A.000 Puade

|SIGNATURE FILE OF ENC CELL GBLO162A.000

[ENCSIGNATURE | DATASERVER 1 CERTIFICATE

st |ost Ecs/
[PUBLIC |SA SIGNED PUBLIC Ecois
Kev |KeY

ECDIS USES SAPUBLIC
KEY TO VALIDATE DATA
'SERVER 1 CERTIFICATE.

ECDIS USES DATA
SERVER1 PUBLICKEY.
TO VALIDATE ENC
SIGNATLRE

INTEGRITY CHECK
OK-ECDIS LOADS

Al

Data Authentication and Integrity Checking

