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I

General

1 • Introduction

The tide1 refers to the alternate rising and falling of the surface of the
ocean due to gravitational forces of the Moon and Sun, stellar bodies whose
movements can be precisely calculated for periods of several hundreds or
even thousands of years. Tides are often studied with the aim of drawing up
tide prediction formulas on the basis of established relationships between
stellar body movements and the response of oceans to gravitational forces.
Meteorologically induced changes in water level, which essentially have to
be accounted for by statistical methods, must be added to or subracted from
these otherwise regular movements. One problem is that this meteorolog-
ical influence is not entirely random. There can, for instance, be seasonal
cycles due to annual fluctuations in atmospheric pressure fields or in diurnal
thermal wind cycles. These signals are often hard to distinguish from grav-
itational signals since their periods may be identical. In practice, the tide is
taken as the predictable portion of height variations, including predictable
atmospheric-driven variations, i.e. the ‘radiational tide’.

Differences between observed and predicted tidal heights are not
considered as part of the tide per-se. But they are still worth investigating
to obtain key information in various other fields (navigation, hydrography,
harbour development, climate studies, etc.).

1. The term tide is currently considered to embody low amplitude movements of any fluid
or solid element within our geosphere (nucleus, magma, lithosphere, ocean and atmosphere),
associated with gravitational attraction forces of the Moon and Sun. This book focuses only
on oceanic tides.
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I. General

Tidal currents represent another (yet sometimes poorly understood)
aspect of tides. This phenomenon is still very important for navigation, and
studies on biological, sedimentological and ecological parameters.

2 • Description of the tidal phenomenon

The tide, or the ceaseless rise and fall of ocean waters along most maritime
coasts, is a familiar phenomenon for anyone living or visiting a coastal area.
This tempo markedly influences the lives of people earning their livelihood
from ocean-related activities. It may seem surprising that such an important
phenomenon has yet to be satisfactorily and rationally explained, but it is
even more astonishing that it is still the focus of ongoing studies.

Beyond the scientific interest, a rational explanation is urgently needed
to enhance tide prediction accuracy and thus facilitate coastal navigation.
Hydrographers, whose job it is to fulfil sailors’ nautical information needs,
were likely amongst the first to become aware of this issue and have since con-
tributed substantially to finding a solution. But maritime navigation is not
the only field concerned, others include harbour development, flood control,
tidal energy use, military amphibian operations, offshore petroleum engi-
neering and, more recently, geodesy, satellite altimetry and climate change
research. These latter applications largely explain the scientific community’s
renewed interest in studying tides in the world ocean.

For Laplace, this is the “trickiest problem in celestial mechanics”. The
complexity of the phenomenon is immediately evident in its description. As
one tries to dig deeper to gain greater insight, the clearer it becomes that
certain empirical prediction rules that should be obtained from observations
can only be approximated. Despite these drawbacks and long before the
advent of modern techniques, tide tables were drawn up according to these
rules to help navagators. They are based on simple observed relationships
between the apparent movement of the Moon (lunar day) and time series
of tidal heights (high and low tide), and between lunations and amplitudes
of the phenomenon. Peak amplitudes, which are reached around the spring
and autumn equinoxes along the Atlantic coast, or around the summer and
winter solstices in some parts of Asia, were also noted, but it was impossible
to draw up empirical laws that could be used to achieve accurate predictions.
It is indeed very hard to document the rhythm of this phenomenon. It is
even theoretically impossible because, contrary to popular belief, the tide
is not periodic, it is the sum of periodic constituents, most of which have
undefinable frequencies – so there is no period at the end of which tidal
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2. Description of the tidal phenomenon

height variations are duplicated identically. However, these conditions were
found to be largely fulfilled at the end of certain periods. The saros, or
Chaldean, period is the most famous and regulates the eclipse cycle – it
corresponds to around 6,585 days, or 18 years and 11 days (see Appendix A).
At the end of this period, the Moon, Sun and elements in their apparent
orbits return to close to their same relative positions and, in turn, the tide-
generating forces slip back to within the range of the initial values. This does
not, however, mean that saros is a tidal period since the resemblance with
the initial tide markedly declines after several saros periods.

Describing spatial aspects of the tide is just as problematic as the temporal
description. In terms of tidal heights, the geographical distribution of
oceanic tidal amplitudes (figure 1.1) does not, a priori, seem to follow any
obvious rule.

Note, however, that the highest values are mainly noted on the continen-
tal shelf fringing the continents, or in shallow areas like the English Chan-
nel. These amplitudes are very low in small semi-enclosed seas (Japan,
Caribbean, Baltic, Mediterranean). No other general rules can be estab-
lished apart from these mainly qualitative findings on the effects of depths
and water body sizes.

We will see that the tidal cycle is mainly the result of the overlap of a diur-
nal constituent (one daily maximum and minimum) and a semidiurnal con-
stituent (two daily maximums and minimums). The relative importance
of these two constituents, which is highly geographically variable, deter-
mines the different basic tidal patterns, and the tide classifications are rela-
tively arbitrary and vary between countries. The following classification was
adopted in France (criteria defined in Chapter VIII):
• semidiurnal type: two daily high and low tides with substantially the

same respective tidal heights
• mixed semidiurnal type: two daily high and low tides, but the high and

low tides differ markedly in height
• mixed type: sometimes two daily high and low tides, sometimes just

one
• diurnal type: only one high and one low tide each day.
The distribution of these four basic tidal patterns in the world ocean

(figure 1.2) also shows that no general rule applies, apart from the fact that
semidiurnal tides prevail in the Atlantic and other types occur only when
the semidiurnal tidal amplitude is low. The regional distribution of the
semidiurnal term of the tide-generating potential (see Chapter III) is likely
related to the predominance of this constituent in the Atlantic, which is the
only ocean that stretches practically from the northern polar basin to the
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3. Historical background

Southern Ocean.
Another feature of the tide – as an ocean wave – is its propagation mode.

Peaks of each constituent wave propagate around so-called amphidromic
points where the tidal amplitude is nil.

In the example presented (figure 1.3) concerning the propagation of an
average semidiurnal tidal wave in the Atlantic, each so-called cotidal line
represents the position of the wave peak at a given time. The indicated phases
are referenced relative to the Greenwich meridian crossing time of the Moon.
Note, for instance, that the line gyrating in the clockwise direction around
the amphidromic point located around 50° N propagates from south to north
along the African and European coastlines but from north to south along the
Greenland and American coastlines. In the southern Atlantic, the two main
networks have common cotidal lines but they inevitably gyrate around the
two amphidromic points in opposite directions. No systematic rules apply
to this rotation direction, which is governed only by hydrodynamic laws.

These cotidal lines are representative of an average semidiurnal tide and
do not entirely reflect the real situation. Amphidromic points corresponding
to real tides are not always immobile, so ‘amphidromic zones’ would be a
more accurate term. Moreover, the diurnal constituent propagates much
differently, i.e. its amphidromic points are not located in the same positions
and there are around twofold fewer as compared to those of the semidiurnal
constituent (around 20 throughout the world ocean).

All of these tidal aspects – discovered as increasingly accurate and geo-
graphically extensive observations have been obtained – have over the
centuries been the focus of queries, more or less relevant hypotheses, the-
ories and scientific studies conducted using increasingly precise techniques,
up to the most recent satellite and computer based technology.

3 • Historical background

This historical review is by no means exhaustive. The history of progress
in understanding tides has been covered by several authors, with the most
recent and complete being that of David E. Cartwright (1999). Only the main
steps in tidal observation and measurement that gave rise to successive tidal
theories and that in turn led to the development of current tide prediction
methods are presented here.
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Figure 1.3: Cotidal lines of an average semidiurnal tide in the Atlantic – wave peak
lines gyrating around amphidromic points, with the phase expressed in hours relative
to the Greenwich meridian crossing time of the Moon.

3.1 • From Aristotle to Newton

At the end of Aristotle’s life, his interest in tides was sparked by watching
tidal current changes in Euripus Strait, between Euboea Island and the
mainland coast of Boeotia, but he was unable to explain this phenomenon.
His frustration prompted him to throw himself into the channel and drown.

Around 330 BC, the Greek geographer and explorer Pytheas left from
Marseille, which was a Greek colony at the time, for a long voyage to the
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I. General

British Isles. He observed tides of unimagined amplitude for someone
only familiar with the Mediterranean Basin, and he made a fundamental
discovery – the tide was in some way linked with the movement of the Moon.
He noted that there were two low and high tides each lunar day, but also that
the tidal amplitude was dependent on the phase of the Moon. The discovery
of these relationships could be considered as the beginning point of tidal
theory research.

At around the same time, when observing tides in the Persian Gulf, Seler-
rens of Babylonia noted that declinations of stellar bodies affected the tidal
amplitude.

Some 150 years later, the Greek astronomer Selukos discovered diurnal
irregularities when observing Red Sea tides and related their amplitude to
the lunar declination.

During the first century BC, the Rhodes philosopher and physicist Posi-
donius drew up a table for tides along the Spanish coasts, correlating their
diurnal, semidiurnal and monthly variations with movements of the Moon
and Sun. At the beginning of the Christian era, the Greek geographer Stra-
bon described tides in Portugal, England, Denmark, Italy and the Persian
Gulf. Around the same time, the Roman naturalist Pliny the Elder men-
tioned the ‘establishment’, the ‘age of tide’ and annual variations in the ampli-
tude of ‘spring tides’.

Hence, the most important tidal characteristics were already known more
than two millennia ago thanks especially to the observations of Greek explor-
ers around the British Isles and in the Red Sea. But it was not until the
late 17th century that the first satisfactory rational explanation for this phe-
nomenon was found.

Meanwhile a number of bizarre hypotheses were put forward, sometimes
even by distinguished scientific minds.

Venerable Bede (673-735), the British scholarly priest, thought that ebb
currents were due to ‘breathings of the Moon’ on the water and that flood
currents occurred when the Moon moved away.

Zakariya al-Qwazwini (1203-1283), an Arab wise man, put forward the
first tentative scientific explanation. According to him, the flood tide was
due to thermal expansion of water heated by the Moon and Sun. But his
hypothesis could clearly not explain why the Moon had the more important
role.

The German astronomer Johannes Kepler (1571-1630), foreseeing the
origin of the phenomenon, was convinced that the explanation could be
found in the action of an attractive force of the Moon and Sun, i.e. a kind
of magnetism. He was likely inspired by the recent discovery of terrestrial

16



3. Historical background

magnetism by the English doctor and physicist William Gilbert (1540-1603).
The Italian physicist and astronomer Galileo (1564-1642) was apparently

surprised by Kepler’s interest in the action of the Moon on water and in
concealed phenomena and other trifling matters. In support of the theory
of Copernicus (1473-1543) that the Earth rotates around its axis, Galileo
believed that tides were induced by a combined effect of this rotation and
the Earth’s orbital movement around the Sun. These movements supposedly
triggered oscillations of oceanic masses to generate tides.

Descartes (1596-1650) thought that tides were induced by the Moon.
According to him, the Moon and Earth were surrounded by a great turbu-
lence and the pressure exerted by the Moon’s turbulence on that of the Earth
produced global tides.

In 1666, the English mathematician Wallis (1642-1727) proposed an
amended version of Galileo’s theory whereby he sought to include the Moon’s
influence. He explained tidal oscillations by the movement of the Earth
around the Sun, as well as by its movement around the Earth-Moon centre
of gravity.

3.2 • Newton’s static theory

In 1687, Isaac Newton (1642-1727) published the theory of universal grav-
itation in his Philisophiae naturalis principia mathematica, thus providing
the first really credible explanation on the origin of tides.

He showed that this involved the attraction exerted on water molecules
in the oceans by the Moon due to its proximity, and also by the Sun on
account of its mass, with the planets having very little influence. A simple
celestial mechanics calculation indicates that, for a specific celestial body
(Moon or Sun), the tide-generating force is the difference between the force
of attraction exerted on an isolated body on the Earth’s surface and that
which the same body would be subjected to if it were located at the Earth’s
core.

Newton could explain three fundamental tide properties with this theory:
the principle 12-lunar hour period, the relationship between tide amplitudes
and phases of the Moon, and finally the diurnal inequality of the tide. He
also determined the values of tide-generating forces exerted by the Sun and
Moon, respectively. He used the Sun’s perturbation of the lunar orbit to
assess the mean distance between the Earth and Moon as equivalent to 60.5
Earth’s radii. This estimate then enabled him to calculate the generating
force of the Sun at its zenith or nadir and at its average distance. He thus
evaluated this constituent as equal to “0.259 · 10−7g”, i.e. 386,049 million-

17



I. General

fold less than the gravity g. This value was remarkably close (less than 2%
error) to the currently accepted value. However, by analysing the spring
tide/neap tide amplitude ratio on the basis of observations along the English
coast, he found that the force exerted by the Moon was 4.5-fold that of the
Sun, whereas the real value is around 2.2 – so he had overestimated the
Moon’s influence by around twofold.

Knowledge of fluid mechanics was too rudimentary in Newton’s day to
enable him to propose a more accurate theory of tides. The static theory
Newton developed is based on the notion that waters covering the face of
the Earth instantly respond to the gravitational attraction of stellar bodies
to form a surface of equilibrium according to the position of these bodies.
This model is unworkable, however, because it disregards the inertia of
water masses and the rate of movement of the stellar bodies. It is especially
unsuitable for explaining the so-called age of tide, i.e. the interval between
syzygy (full moon or new moon) and the next spring tide, or the tidal
amplitude range along coastlines. In 1740, Bernoulli (1700-1782) published
a study based on Newton’s theory, but the only really interesting finding, in
an analysis of tidal observations recorded in Brest from 1714 to 1717, was
a ratio of 2.5 between lunar and solar tides – close to the theoretical value
(2.18).

Newton’s fundamental discoveries were unsatisfactory for tide forecasting,
but they still provided a basis for the development of subsequent theories.

3.3 • Laplace’s dynamic theory of tides

It took more than a century before further progress was made in
explaining the tidal phenomenon. Laplace (1749-1827) introduced the ‘tide-
generating potential’ concept in a theory he presented before the French
Académie Royale des Sciences in 1775. Later he developed this theory con-
siderably and included it in his celestial mechanics treatise. He was the first
to deal with the tide in terms of water mass dynamics rather than as a static
problem.

According to this dynamic theory, which has yet to be challenged, the
marine response to the tide-generating force is in the form of diffuse waves
that propagate through the oceans at a depth-dependent velocity. Like all
undulating phenomena, these waves are reflected, refracted and dissipated
according to the nature of the propagation medium and shape of the oceanic
basins. The tide that occurs at one point is thus the result of the convergence
of all of these elementary waves originating from different oceanic points,
each of which has encountered different propagation conditions on its path.

18



3. Historical background

All of these constituents can obviously interfere with one another, thus
boosting or, conversely, diminishing the amplitudes at certain frequencies.

The hydrodynamic equations proposed by Laplace could not be solved
with the calculation methods of the time, but they have never been chal-
lenged. They gave rise to Laplace’s formula, which can be used for tidal pre-
dictions, based on two key principles:
• the forced oscillation principle: water masses subjected to a periodic

force induce oscillations of the same period
• the overlapping submovement principle: the total movement of a sys-

tem subjected to small forces equals the sum of the elementary movements.
These two principles express the postulated linearity of oceanic responses

to the tide-generating force. Laplace monitored the tide at Brest to test
his theory and the findings closely confirmed this linearity hypothesis. As
the tide-generating force is the sum of elementary periodic forces, Laplace’s
formula implies that the tide can be broken down into oscillations of the
same period. The linearity hypothesis is not out of line with the fact that two
parameters, i.e. the proportionality factor and the phase difference between
a constituent tide and the corresponding tide-generating force, could be
frequency dependent. These two parameters, which also depend on the
hydraulic conditions at the location (tidal wave propagation varies with
depth), should in practice be determined experimentally through analyses
of available tidal height data.

A key aspect of Laplace’s formula is that it can be applied to highlight, for
tides generated by each stellar body (Moon and Sun), three distinct terms
that each correspond to oscillation period groups, which Laplace called
‘species’. The first so-called ‘long-lived’ species correspond to periods rang-
ing from 7 days to over 18 years; the second ‘diurnal’ species have frequen-
cies of roughly one cycle per lunar day (cpld); while the third ‘semidiurnal’
species have frequencies of around 2 cpld.

This species classification is the foundation of Laplace’s dynamic theory
of tides. Based especially on the findings of his studies carried out at Brest
between 1771 and 1776 and published by J.-J. de Lalande, Laplace calculated
monitoring site dependent coefficients that enabled him to develop a method
for predicting high and low tide times with the corresponding tide heights at
the tide-monitoring port. The main advantage of Laplace’s formula is that
it provided a practical method for predicting high and low tides – this is
referred to as the Laplace method. In 1839, the hydrographical engineer
Chazallon published the first scientifically calculated tide table. High and
low tide times for Brest were determined using this method, while tide
heights for other ports were calculated based on the levels at Brest. Following
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some initial reluctance to change habits, this table was quickly adopted by
navigators to replace their previous tables published in different almanacs
that were empirically drawn up (and likely quite inaccurate).

Laplace’s formula was used for tide table calculations for the French Annu-
aire des marées des côtes de France for over 150 years. Prior to the advent of
computers, no other method was developed that could provide more accu-
rate tide calculations at Brest. However, due to the linearity hypothesis
upon which it is based, this formula could not be reliably applied elsewhere.
Indeed, it has only been used to calculate tide tables for Brest. The linearity
hypothesis was fully confirmed for this port, but a few adjustments were nec-
essary to correct certain systematic errors, especially those associated with
radiational tides.

Subsequently, the two Englishmen Whewell and Airy focused studies on
the propagation of tidal waves – these waves rank first in oceans and second
in channels and rivers when friction is taken into account.

It was not until the late 19th century that further progress in tidal pre-
diction calculations was made, especially through the work of Sir William
Thomson (Lord Kelvin).

3.4 • The harmonic method of Kelvin-Darwin-Doodson

Thomas Young (1773-1829) had already stressed the importance of
analysing ocean level data overall, rather than just low and high tide data as
Laplace did. Airy contributed by laying the foundations for harmonic analy-
sis. However, merit goes especially to Kelvin for developing a practical tide
data analysis method. In 1867, the British Association for the Advancement
of Science (BAAS) formed a committee to promote the enhancement and
widespread application of tidal harmonic analysis. The first report of this
committee was written by Kelvin himself and published the next year. Fur-
ther similar reports were subsequently published on this topic. However, the
most significant contribution was G.H. Darwin’s report published in 1883.
Concerning the tide-generating potential, this latter document presented a
harmonic constituent expansion that has been widely used and provided a
basis for all tidal studies carried out since then.

These harmonic constituents are still referred to by Darwin’s initial names.
The calculation methods, which were developed and adapted using means
available at the time, are often used on computers without modification.
However, their expansion is based on an ancient lunar theory whereby all
elements are related to the orbit, which is somewhat unsatisfactory since it is
not completely harmonic. In fact, corrective factors had to be introduced to
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account for slow variations in the expansion constituents. With these long-
term variations, the corrective factors can be taken as constants for annual
durations. These factors are calculated for several years and available in table
form. These tables are not suitable for computer predictions, but they are not
problematic for manual calculations.

This is probably why Darwin’s method has been used for such a long
time, even though a strictly harmonic expansion was available as early as
1921. This advance was due to another Englishman, A.T. Doodson. He
published an expansion in the Proceedings of the Royal Society that was more
accurate with respect to lunar latitudes and longitudes. These coordinates
are based on the ecliptic for here and were determined by Brown in a new
lunar theory (1905). This new numeric harmonic expansion gives a much
greater number of terms than Darwin’s expansion and, moreover, it does
not require corrective factors. Tables are therefore no longer required and
automatic processing is substantially improved.

Other more complete or accurate expansions have been proposed since
then. However, for practical tide calculation applications, these new expan-
sions did not bring any significant progress and Doodson’s expansion is still
the international benchmark.

3.5 • The models

The harmonic method was developed on the basis of the work of Darwin
and Doodson and then fully exploited in order to come up with a practical,
accurate, and potentially widely applicable tidal prediction method. This
latter procedure does not markedly differ from Laplace’s method as it is also
based on a theoretical formulation, and a number of parameters have to be
determined experimentally by analysing available data. The timeframe must
be long enough to achieve maximal accuracy. For instance, for tidal height
variations in the range of those occurring along the coasts of France, the
English Channel and the Atlantic, a year of top quality measurements are
required to generate tidal predictions that are sufficiently accurate to meet
navigation needs. Then the results can only be used to predict tides at the
site where the initial data were recorded.

A more far-reaching approach, whereby the physical problem of tidal
wave formation and propagation is solved directly in its environment, has
long been a focus of interest, pioneered by Bernoulli, Whewell, Poincaré
and Harris. However it was not possible to come up with an accurate
solution to this issue without using powerful calculation tools because of
the bathymetric complexity and highly irregular coastlines fringing ocean
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basins. It was still possible, through analytical solutions, to qualitatively
explain overall trends concerning tidal propagation in ocean basins like the
Atlantic. In particular, amphidromic points where the tidal amplitude is
nil and around which cotidal lines gyrate (figure 1.3) could be determined
analytically.

With the advent of computers, the development of new numeric meth-
ods enabled real progress in this direction. Studies by the German scien-
tist Hansen (1949) sparked renewed interest in solving Laplace’s equations
for real tidal conditions. Deviations and some incoherence in results gener-
ated by different models (Bogdanov and Magarik, 1967; Pekeris and Accad,
1969; Hendershott, 1972; Zahel, 1977; Schwiderski, 1981) indicated that,
over and above boosting environmental knowledge, it was essential to gain
greater insight into the form and bathymetry of ocean basins, but also to
refine the equations. In fact, major physical and mathematical problems,
associated with tidal energy dissipation (bottom friction and internal tidal
wave formation) and also numeric methods adopted for modelling, are still
at issue.

Finally, it should be mentioned that accurate offshore tide data are now
essential to fulfil current spatial altimetry, trajectography and geodesy needs,
and there is renewed interest in modelling offshore tides on a global scale.
The advent of spatial altimetry, which generates centimetre-accuracy water
level recordings in the world ocean, has led to the development of more
realistic tide models that incorporate abundant spatial altimetry data.

4 • Various tidal features and definitions

4.1 • Tidal curves

Tidal curves are plotted on graphs that give ocean height measurements or
predicted tide heights over a period of time. For example, the curve shown
in figure 1.4 was plotted for a 24 h semidiurnal tide prediction for Brest.

This graph shows four extremes (two minima and two maxima), with
each minimum representing low water (LW) and each maximum being high
water (HW). The short period at high or low water during which there are no
appreciable height variations is called stand. This is, however, a somewhat
subjective definition because there is generally no plateau at high or low
water. From low to high water, the height rises during the flood or rise phase,
and it declines from high to low water during the ebb or fall phase.

The difference in height between the two consecutive extremes is called
the tidal range, which should not be confused with amplitude, which refers
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Figure 1.4: Tidal curve (prediction) for a semidurnal tide, with two high tides (HT)
and two low tides (LT) daily with practically equal tidal ranges – 24 h prediction for
Brest, France.

to a sinusoidal function such as that of a constituent tide – when amplitude
is used in reference to tides, it means half of the tidal range.

The ‘hydrographic datum’, or what is still called the ‘chart datum’, is used
for referencing tidal heights.

Figure 1.5 presents another example of a semidiurnal tide curve over a
lunation cycle of around 30 days. The tidal range variations are very typical,
going from a minimum during the neap tide (NT) to a maximum during
the spring tide (ST). The tidal range increases during the priming phase and
declines during the lagging phase.

The age of tide is the time interval between phases of the moon and the
tidal minima or maxima that immediately follows. The full and new moons
(FM and NM) are followed by spring tides, while the first and last quarter
moons (FQ and LQ) are followed by neap tides.

4.2 • Types of tide

At the beginning of this chapter, the different tidal types, and the arbitrary
basis for such classifications, were described (figure 1.2). The British often
classify tides into three categories, whereas a four-type classification is prac-
ticed in France, as illustrated in the following examples:
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Figure 1.5: Semidiurnal tide prediction curve over one lunation cycle (29 days) show-
ing tidal range variations according to phases of the Moon (Brest, France).

a. Semidiurnal tide. — Brest, France, figures 1.4 and 1.5; Casablanca,
Morocco, figure 1.6A. The curves for this type of tide, as already discussed
for Brest, clearly show two daily high and low waters with almost identical
respective heights, corresponding to almost identical tidal ranges. Semidiur-
nal tides prevail in the Atlantic, especially along the African and European
coasts.

b. Mixed semidiurnal tide. — Mui-Vung-Tau, Vietnam (southern coast),
figure 1.6B. The tidal range varies markedly over one lunar day. The diurnal
inequality, i.e. the difference between the high and low tidal ranges, is great-
est when the declinations of the stellar bodies are reaching their maxima.

Diurnal inequality may also be noted along the European coasts, but the
tide is classified as semidiurnal since this inequality is slight. However, the
inequality is very high in many ports in the Pacific and Indian Ocean regions.

c. Mixed tide. — Qui-Nhon, Vietnam (eastern coast), figure 1.6C. In ports
with a mixed tide, a semidiurnal tidal period is succeeded by a diurnal tidal
period over one lunation cycle. This type of tide is also noted along the
coasts of Indonesia, Siberia and Alaska, as well as in some ports in the
Atlantic and Caribbean (Fort-de-France).

d. Diurnal tide. — Do Son, Vietnam (northern coast), figure 1.6D. There
is only one high and low tide per lunar day along coasts where diurnal tides
prevail. The associated tidal range varies with the declination of stellar
bodies. This uncommon tidal type occurs especially in the Pacific Ocean,
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Figure 1.6: The French four-type tidal classification illustrated with a half-lunation
tidal prediction curve (14 days). A: semidiurnal tide, B: mixed semidiurnal tide, C:
mixed tide, D: diurnal tide.

along the Siberian coasts where the tidal range is very high, in Alaska and
Southeast Asia.

It is interesting to note that the latter three tidal types often occur in
neighbouring regions.

4.3 • Shallow-water tides

Sinusoidal tidal waves propagate through deep open ocean waters until
they reach a continental shelf. The wave shape changes markedly close
to coasts and shallow estuaries. This can be explained by the fact that
the periodic tidal constituents derived from the tide-generating force over-
lap in these shallow-water areas, thus creating harmonics that can propa-
gate independently. Tidal curves plotted for coasts along the English Chan-
nel (Portsmouth, UK, figure 1.7A) and the North Sea (Hoek van Holland,
Netherlands, figure 1.7B) are typical examples for points reached by the wave
after a long passage over a shallow continental shelf.

Tide propagation patterns up the Gironde estuary provide another typical
example of shallow-water wave distortion (figure 1.8). This modification
could be explained by hydrodynamic laws according to which the wave
velocity c of a hydraulic wave is a function of the square root of the depth,
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Figure 1.7: Tidal prediction curves for shallow-water areas over a 24 h period. A:
Portsmouth, UK; B: Hoek Van Holland, Netherlands. Tidal curves for sinusoidal waves
propagating through deep ocean waters are distorted as the waves propagate through
shallow waters.

or:

c =
√

g(H+ h)

where H is the mean depth at the site and h is the time dependant wave height
(with mean = f).

When the depth H is great, differences in amplitude dh = hmax − hmin
do not appreciably modify the propagation velocity, whereas they do when
H is shallow. Wave crests thus progress faster than the troughs, i.e. a wave
crest tends to overtake the previous trough. This phenomenon is especially
clearcut in estuaries, as shown in the Gironde example (France, figure 1.8).
A tidal bore, or wall-like wave, may form in extreme cases – a phenomenon
that occurs in many large river estuaries. Bore heights can reach several
metres, especially in Qiantang-Jian (China; almost 9 m during equinox
periods) and Amazon (Brazil) estuaries.
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4.4 • Spectral features of tides

The tidal spectrum is an objective representation of the phenomenon
obtained by calculation, and is independent of all tidal theories. It is
especially suitable for representing the observed signal (ocean level varia-
tions), so it is worth acquainting ourselves with this mode of representation
as it will be referred to regularly hereafter. We will not propose a precise def-
inition for spectrum apart from the fact that it represents the amplitude, or
energy, according to the frequency or period of the analysed signal.

This type of low resolution spectral representation (adjacent frequencies
are poorly resolved) highlights changes in tide structure upstream from
the mouth of a large river (Seine River, France: figures 1.9A and 1.9B).
This change in tide structure is linked with tidal wave propagation through
shallow waters. These examples show that the main feature of tidal spectra
is the distribution of spectral lines in clearly distinct groups separated by
relatively broad but regular frequency intervals. The semidiurnal tide group,
which corresponds to two cycles per lunar day (cpld), is the largest. It
appears wider than the others, but is actually an artefact due to the relatively
short time series analysed.

Note the high energy values at low frequencies in both of these examples,
especially for those below 4 cpld. Part of this energy is derived from varia-
tions in tide heights induced by weather disturbances.

These two spectra (figures 1.9A and 1.9B) clearly show the increase in
harmonic number when the tidal wave propagates upstream from the river
mouth. The upstream spectrum gives an energy distribution up to very high
frequencies. In fact, tidal interaction harmonic constituents formed because
this is a spectrum of tidal levels recorded in a river (shallow waters). Most of
the astronomical tide directly generated by attractions of the Moon and Sun
are simply represented by the first three tide groups (diurnal, semidiurnal
and mixed diurnal). The increase in the number of between-wave interac-
tions gives rise to the other groups (so-called hydraulic waves) during tide
propagation upstream from the mouth.

The high-resolution spectral signature for a semidiurnal group at Brest
obtained through an analysis of more than 120 years of almost continuous
recordings gave a multiple-line spectrum (figure 1.10). A large number of
clearly identified constituents appear in this latter spectrum (see Chapter V
and Annex C for a definition of the alphanumeric characters on each line
of the graph). These results confirm the advantages of representing tides in
harmonic series.

An enlarged view of the part of the spectrum in the vicinity of the M2
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Figure 1.9: Low resolution tidal spectra in shallow waters (Seine River, France). A:
Beacon A at the river mouth, B: at Rouen, about 100 km upstream. This type of
representation highlights the energy distribution around frequencies close to integer
numbers of cycles per lunar day (cpld).

spectral line, i.e. the main lunar wave, provides a more detailed illustration
of this structure (figure 1.11). Most of these are low amplitude constituents,
some of which one might be tempted to disregard.

It is, however, essential to avoid eliminating any of these small constituents
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as they could be crucial for reconstructing the tide. There are actually
just six degrees of freedom in the three-body system (Sun, Earth, Moon).
Hence, all of these small constituents are derived from this system and
are interdependent. Taken individually, each of these constituents could
be disregarded but their cumulated energy is quite substantial due to their
number.

4.5 • Tidal currents

The tide oscillates like swell movements in the ocean surface layers. In
both cases, and at first approximation, water molecules have a closed vertical
path with specific wave frequencies and lengths. Contrary to swells, however,
the tide always has a much longer wavelength with depth. In a uniform deep
ocean, tidal movements affect the entire water column. All molecules within
the same vertical plane have virtually the same extremely flat orbits. These
vertical movements make up the actual tide, while the horizontal movements
are incomparably greater and form tidal currents. These currents are gen-
erally more intense on the continental shelf (shallow waters) than offshore
(deep waters).

In a density-stratified ocean, internal tidal waves occur, especially near
continental slopes, and modify the vertical structure of currents. In extreme
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Figure 1.10: ‘High resolution’ spectrum of a ‘semidiurnal group’ at Brest, showing
spectral lines typical of astronomical tides.
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Figure 1.11: Spectrum within the vicinity of the main semidiurnal M2 constituent at
Brest, showing a very fine structure responsible for long-term modulations.

cases, e.g. in Gibraltar Strait, currents induced by these mainly semidiurnal
internal waves sometimes move in opposite directions between the surface
and the bottom. Like bottom friction, these internal waves contribute to tidal
energy dissipation.

Tidal currents are studied to some extent with the same tools as those
used for tidal analysis, but there are more problems for two main reasons, i.e.
the high spatial variability in current features, and also the lower temporal
regularity of currents under the influence of meteorological factors. Because
of the very high intensity of tidal currents in certain areas (close to coasts
and in straits), it is essential to study the mechanisms so as to be able to draw
up navigational aids, which is a key task of hydrographic services.

Current calculation methods enable detailed modelling of tidal currents.
Such modelling is used to an increasing extent for the purposes of drawing
up current charts according to tide times. The example shown in figure 1.12,
which represents currents around Ile de Batz 3 h after full tide at Roscoff

(Brittany, France), is extracted from a navigation handbook, which is espe-
cially useful in zones where tidal currents are sometimes violent.
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The last chapter of this book focuses especially on these tidal currents and
their modelling.
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II

Tides and their

measurement

Tides and their measurement refers to the description of the tidal phe-
nomenon and measuring instruments that are used to measure the tides and
thereby understand them. In this chapter, the needs of this discipline are
reviewed and the focus is then placed on ‘stilling wells’, which are some-
what cumbersome structures but necessary to achieve high quality water
level measurements with conventional tide gauges. The main calibration and
monitoring systems are then described, ranging from the standard tide staff,
which is still a mainstay, to radar altimetry derived from spatial techniques.

1 • Aims of sea level measurement

Accurate information on sea level variations, especially in coastal areas,
is crucial for tide measurement, navigation and studies on the oceanic envi-
ronment. The information needed thus varies depending on the accuracy
required, measurement timeframe and processing conditions.

There is a rising demand for highly accurate measurements, especially
from the scientific community, whereas the network of existing tide stations
was set up chiefly to fulfil the requirements of marine navigation needs.

This network is virtually the exclusive source of data for tidal prediction
and chart sounding correction.

Difficulties associated with various measurement and processing condi-
tions hamper the use of these measurements for other scientific applications

35



II. Tides and their measurement

(studies on coastal and offshore works, etc.). Issues concerning the stream-
lining of these measurement systems to fulfil a broad range of alternative
needs are technical, but also both structural and financial.

1.1 • Coastal marine navigation

Information on sea levels was first collected to facilitate navigation along
coasts and to allow safe access to harbours with a broad tidal range. It was
essential that these measurements be available in real or almost real time.

Users generally obtained information by direct observation to fulfil their
navigational needs:
• from a tide staff at the entrance to harbours or along channels in mar-

itime sections of rivers,
• or in large harbours via buoyage markers and signals, i.e. cones and

cylinders during the day and green, red and white lights at night.
Highly advanced systems have been developed in some estuaries, with

water levels at different observatories being transmitted to ships via radio
relay, VHF, etc.

It is important to keep in mind that the uncertainty in water height mea-
surement makes it difficult to accurately determine the under keel clearance,
i.e. the margin of safety between the seabed and the ship’s keel. Moreover,
there is increasing demand from sea transport services and pilots for high
quality water height records due to the high operating costs for large vessels
(harbour layover is very costly), and also to the fact that harbour infrastruc-
tures must remain cost-effective. The data precision currently required is
around±5 cm.

1.2 • Navigational chart bathymetry

Tidal correction of chart sounding data is necessary do establish the
navigational chart bathymetry. This so-called sounding reduction operation
will be discussed in Chapter IX.

Measurements required for sounding reduction have long been obtained
from portable float gauges located near the coast. The drawback is that they
require fixed vertical structures, which may not be available near the survey
area. Moreover, the quality of the data obtained from these devices is often
poor.

Pneumatic bubbler tide gauges are sometimes used and then the choice
of site is less restrictive. However, tide measuring operations using these
gauges are not always conducted carefully enough to obtain accurate high
quality measurements.
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1. Aims of sea level measurement

So-called ‘deep-sea tide gauge’ pressure sensor systems (moored on the
seabed) are used to an increasing extent for this application. Their connec-
tion to the levelling network is achieved by simultaneous readings from a
tide staff within the vicinity. These tide gauges can also be used for sounding
in offshore areas. However, atmospheric pressure and sea water density cor-
rections are required to determine water levels on the basis of readings from
these sensors. Moreover, real-time readings would be useful for processing
sounding data while facilitating sensor monitoring, but unfortunately this
is not possible with these devices. Some prototypes have been developed
to enable data transmission in response to remote requests, but there is a
greater need for an instrument that would be robust (easy to transport and
install) and generate real-time measurements, in addition to having a remote
transmission potential, while of course being equipped with a high quality
sensor.

1.3 • Tidal prediction

High quality tide data are required to accurately calculate tide tables. Sys-
tematic errors, due for instance to discrepancies in tidal time or height mea-
surements of recording systems, are detrimental to the prediction accuracy.

A 1-year record of hourly water level measurements is generally suffi-
cient to generate predictions that are accurate enough for navigational needs.
However, wherever the tidal wave flows over broad shallow expanses (conti-
nental plate or estuaries), a record of more than 4 years is required to enable
calculation of certain harmonic constituents of nonlinear interactions. It is
generally recognized that the best predictions require a 19-year water level
record, but such long-term high quality tide data are seldom available.

A record of less than 1-year may be acceptable for some sites, e.g. when
there is such a low tidal amplitude that even an imprecise prediction is
sufficient, or when the use of tidal constants is possible due to the presence
of a nearby port where accurate predictions are readily achieved. A 1-month
record may be sufficient if high quality measurements are available. In such
cases, it is preferable to obtain measurements in summer when the sea level
is least likely to be disturbed by meteorological effects.

Series of hourly recordings are used to assess the frequency spectrum for
up to 1/12th diurnal tides, which is generally sufficient. However, for some
river tides, a faster recording rate may be required because energy could be
detected beyond the 1/30th diurnal tide in some estuaries (e.g. see the tidal
spectrum for the Seine River at Rouen, figure 1.9B).
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II. Tides and their measurement

1.4 • Miscellaneous studies

Tidal height data are also used for nonhydrographic purposes. Measure-
ments used for such applications differ mainly with respect to their accuracy,
logging rate and duration requirements.

1.4.1 • Meteo-oceanic and climatic studies

In all coastal and offshore parts of the ocean, the sea level is affected by
highly interdependent physical processes such as the water density (depen-
dent on temperature and salinity), other local nontidal currents, ocean cir-
culation, waves, atmospheric pressure and wind. Sea level measurements
thus bear the mark of each of these phenomena and could consequently con-
tribute to their study.

1.4.2 • Extreme levels

Information on maximum and minimum tidal levels over very long peri-
ods (a century if possible) is required for all project studies (harbour infras-
tructures, coastal structures or oil rigs). When the tide heights are consid-
ered to be known, only the probability of positive and negative surges has to
be assessed. Long series of high quality measurements are also required for
such studies.

1.4.3 • Coastal wave propagation models

Tide records are required to determine the boundary conditions when
calibrating and validating tide propagation and storm surge models. It is
hard to obtain sea level measurements for water depths of several hundreds
of metres under open offshore boundary conditions.

As noted above, this measurement technique is achieved for bathymetric
studies of continental shelves at depths of less than 200 m. However, for
modelling on an ocean basin scale, considerable expertise and financial
resources are often required to obtain accurate water height measurements
in very deep water areas, and cooperation between several organizations is
generally necessary.

1.4.4 • Mean sea level

Studies of relatively long-term changes in mean sea level could, for
instance, provide essential information on the impact of the ocean on cli-
mate and global ocean circulation. For such studies, however, the stan-
dard world network of tide stations has major shortcomings – it is not uni-
form (concentrated in the Northern Hemisphere) or suitable for monitoring
global ocean dynamics. Tide gauges specifically designed to generate such
readings would therefore have to be installed to meet this need.
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1. Aims of sea level measurement

It is generally acknowledged that the sea level rises by around 1-2 mm
a year worldwide, but estimates on the rate of increase vary markedly
between authors. Hence, the exact causes of this rise are unknown, espe-
cially the extent of involvement of the greenhouse effect, due to the
increase in industrial carbon dioxide release into the atmosphere. How-
ever, TOPEX-Poseidon satellite ocean surface measurement data indicated
a mean increase of around 2 mm/year between 1993 and 2000, but this
increase was not uniform throughout the world’s oceans, i.e. regional dif-
ferences of±20 mm/year were noted.

The problem of measuring sea level increases could be overcome by posi-
tioning tide gauges with reference to a single vertical reference level, e.g. the
International Ellipsoid of Reference. Moreover, an increasing number of tide
stations are now equipped with geodetic positioning systems involving spa-
tial technology.

In 1984, the joint IOC/WMO committee for the Integrated Global Ocean
Services System (IGOSS) launched the pilot IGOSS Sea Level Project in the
Pacific (ISLPP) to promote operational exchange of mean sea level data for
the Pacific Ocean region. The ISLPP data center is based at the University
of Hawaii and is responsible for rapid dissemination (within 4 weeks) of
monthly mean sea level maps.

It is also important to mention the Global Sea Level Observing System
(G), i.e. an international programme under the aegis of the Joint Tech-
nical Commission on Oceanography and Marine Meteorology (JCOMM) of
the World Meteorological Organization (WMO) and the Intergovernmen-
tal Oceanic Commission (IOC). G has overcome the shortcomings of
conventional tide monitoring networks by promoting the development of a
top quality joint global/regional network to fulfil the needs of oceanographic
and climatological research. The Global Core Network (GCN) is the main-
stay of G, with almost 300 tide stations located worldwide to monitor
climatic and sea level variations. These stations are designed to supply sea
level measurements with centimetre accuracy and are referenced in a global
geodetic system. These data are available online from the University of
Hawaii Sea Level Center, the Permanent Service for Mean Sea Level(PSMSL)
or the World Ocean Circulation Experiment (WOCE).

1.4.5 • Improvement of tidal predictions in shallow waters

Traditional analysis and prediction methods are unreliable when the tidal
wave is highly deformed by nonlinear processes such as bottom friction
and advection. These processes have a substantial effect when tidal height
variations are comparable to the mean ocean depth variations.
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II. Tides and their measurement

Tidal prediction methods tailored for and used in estuarine regions take
variations in stream discharge into account. This requires series of good
quality sea level measurements obtained at 10 min intervals.

1.4.6 • Warning systems

Some sea level monitoring networks are coordinated to forewarn coastal
inhabitants who are vulnerable in cases of natural catastrophes such as storm
surges and tsunamis. The two most famous systems are located in the
North Sea, to issue warnings on especially dangerous storm surges along the
eastern coasts of Great Britain and the Netherlands, and in the Pacific where
the University of Hawaii issues tsunami warnings.

1.4.7 • Spatial altimetry calibration

The development of spatial monitoring techniques has given rise to an
increased need for sea level data. As we noted in the introductory chapter,
satellite-borne radar altimetry equipment currently provides sea level data
with centimetre accuracy. However, due to the altimeter sampling conditions
and the fact that little information is available on the geoid aspects of coastal
waters, the satellite readings have to be calibrated via a tide recorder located
on the vertical axis of the satellite’s orbit. The geodetic positioning of the tide
recorder is thus absolutely crucial, as is also true for long-term studies on sea
level variations.

2 • Stilling wells

Most tide stations have a so-called ‘stilling well’ installed. It consists
of a pipe, chamber or compartment that communicates with the sea via a
small intake opening located at the bottom, below the lowest water level.
It is sometimes fitted with a pipe extension whose length depends on the
topography of the site. This device is cumbersome but also essential for
several reasons. It mainly serves to dampen variations in level due to waves,
swells and seiches (sea level variations in harbour basins and bays) in order
to obtain a horizontal surface whose height is identical to the external level,
averaged over a time span equal to the measurement sampling time. The
stilling well housing also provides weatherproof protection for the recording
systems. Without this protection, even the sturdiest instruments would
quickly break down, especially at exposed sites.

However, the stilling well hydraulic system has the drawback of not pro-
viding linear damping. Errors associated with the internal response of this
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2. Stilling wells

system should also be examined with respect to external sea level variations.
This issue is discussed in Appendix B.

2.1 • Other errors associated with stilling wells

In addition to the intrinsic error (not related to the measurement system)
associated with the nature of the response of the stilling well hydraulic
system, various other errors (also independent of the measurement system)
can bias measurements.

For instance, the errors mentioned in Appendix B, which are not related
to the stilling well but rather to the characteristics of the medium in which
it is submerged. Siltation and concretion (due to the growth of marine
organisms) are two factors that should be carefully monitored around both
the intake opening and within the pipe. Partial plugging is often not noticed
at first and may cause a phase lag without markedly altering the amplitude.
This problem, however, often seriously degrades the quality of the readings
over time. The stilling well pipe should thus be inspected and cleaned on a
yearly basis.

2.1.1 • Errors due to density differences

The difference in water density between the internal and external sides
of the stilling well is another source of error that has to be accounted for to
ensure that high accuracy measurements are obtained. During a tidal cycle,
the temperature and salinity of coastal waters may vary widely, especially
during the summer months and near river mouths. The water within the well
is never completely renewed since the exchange takes place only via the small
intake opening at the bottom of the well. Hence, the water that flows into the
well as the tide rises is often denser than the external water at equal depth.
The result is that the water level is lower within the well than outside it. This
effect is reversed when water of lower density flows into the well and remains
there (with no possibility of being renewed), i.e. the water in the well is less
dense and the level is higher than outside the pipe. Using the notations given
in Appendix B (figure C.1), let dh = hp − h and dr = rp − r be the density
error (mean determined for the water height from the well intake) between
the water in the stilling well and the external sea water. The difference in level
according to the hydrostatic hypothesis is

dh = (z0 + h)
dr

rp
≈ (z0 + h)

dr

r

. (2.1)

For a stilling well of around 10 m depth (with a broad tidal range), a
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II. Tides and their measurement

one part in a thousand error in density would cause a centimetre height
difference.

Another often overlooked source of error associated with density differ-
ences is atmospheric water vapour condensation on the walls of large diam-
eter deep wells. The resulting condensation runoff creates a surface layer of
fresh water within the well that tends to increase over time if there is not suf-
ficient evaporation. The relative error in density between the sea water and
the fresh water is around 3 · 10−2, so a cumulated fresh water layer of 1 m in
a deep well would induce a 3 cm overprediction error relative to the external
sea level.

It is not common practice to measure the vertical distribution of water
densities on the internal and external sides of stilling wells. Easy advanced
techniques are nevertheless available for such measurements. In wells
designed to provide accurate readings for scientific applications, these tech-
niques could be useful – at least for verification purposes – if only to supple-
ment conventional tide pole and light probe readings.

In estuaries, water level errors due to density variations are almost system-
atically encountered. In tidal rivers, for instance, the water density within the
well is lower than the external water density and water level errors of over 6
cm for a 2 m tidal amplitude may occur.

2.1.2 • Errors due to currents around the intake opening

Water movements around the intake opening of the well (permanent
or tidal currents, orbital speed of swells and waves) can, by the Venturi
effect (vacuum created by streamline bottlenecking around the stilling well),
induce unwanted pressure variations that affect the water level reading inside
the well (Appendix B). This Venturi effect could be accounted for in the well
equation, but would substantially boost the complexity of the calculation.

This vacuum created at the intake opening is maximum when the intake
plane is parallel to the flow upstream from the well, thus inducing a decrease
in the internal water level, e.g. 20 cm with an upstream current of 1.5 m/s ≈
3 knots (figure 2.1). The different curves in this figure show that the measure-
ment error can be reduced by gradually introducing appropriate improve-
ments. A reduction in the corresponding error of over an order of magni-
tude is thus possible by changing the shape and location of the input opening,
whose characteristics may be seen on the small icons at the ends of the curves
on the graph. The best solution for a well with an intake opening (without
pipe) is represented by the icon at the end of the g curve in figure 2.1. This
configuration has been adopted in particular for Australian stilling wells in
the Pacific tide station network (figure 2.2).
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Figure 2.1: Decrease in water levels in a stilling well due to currents (Source: G. W.
Lennon, 1967).

Note also that there may be discrepancies in atmospheric pressure
between the inside and outside of the tide station (where the stilling well
is installed) – vacuums created by strong winds (Venturi effect around the
housing) or excess pressure due to warming of the air within the housing if
it is too air- and water-tight. These variations generally induce errors of the
order of centimetres.

Fortunately, all of the faults noted above are extreme cases. They are gener-
ally not a problem at harbour sites with very marked tidal falls or where tide
recorders are protected from swells, currents and siltation. Internal/external
stilling well water level differences can be systematic, but they are generally
of minor consequence. It would therefore be untimely to try to overcome
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Figure 2.2: Diagram of a Seaframe-type tide station (Australia). A: protective housing
for the recorder and transmitter; C: pressure sensor; E: tide staff; GPS: antenna for
GPS positioning of the station; O: stilling well intake opening (note the Venturi tube
and wave protection plate); P: protective housing for the stilling well; R: control mark
(geodetic point); S: ultrasonic depth finder (Source: IOC Manuals and Guides).

this fault by renovating a tide station that has been operating for decades as
such modifications could upset long-term monitoring of tidal phenomena.
This fault actually induces differences in water level caused by factors similar
to those that induce systematic water level differences that may be observed
between the internal and external sections of a port, roadstead or bay.

3 • Conventional tide recording systems

A stilling well is essential when setting up a permanent tide station along
a coast. Many permanent tide gauges managed by hydrographic services are
located in harbour areas or along navigable estuaries. Data from temporary
stations are generally processed for short-term hydrographic purposes.

Several techniques are used for sea level measurement. The most long-
standing techniques remain important and widely used, such as tide staffs
(or poles). Float gauges are still used, whereas so-called analogic graphic
recording systems are gradually being replaced by automatic digital data
logging systems.
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3. Conventional tide recording systems

As this new tide recording technology has only been introduced in recent
decades, long time-series sea level data (required to determine long-term
patterns) are still mainly obtained with conventional recording instruments
such as tide staffs and float gauges.

These latter two instruments will first be presented while assessing the
quality and accuracy of the respective data they generate, and more recent
systems will be discussed in section 4 of this chapter.

3.1 • Tide staff–the mainstay

The first tide data were obtained from direct tide staff readings. Some of
the oldest known tide data were logged at Brest (France). From 1711 to 1717,
tide staff low water and high water readings were obtained during daylight
hours and subsequently used by Laplace to develop his dynamic theory of
tides.

As noted at the beginning of this chapter (1.1.Coastal marine navigation),
direct tide staff readings can facilitate navigation. Readings from this instru-
ment are now mainly used to calibrate and monitor levels determined via
other tide-measuring systems.

In compliance with hydrographic sea level measurement standards (set
by the International Hydrographic Organization, IHO), all permanent tide
stations should be equipped with a tide staff. This is the only instrument that
provides direct water level readings outside a stilling well, so it is a mainstay
for overall monitoring of levels measured within the well (to ensure that
the well is functioning properly and to validate the resulting data logs). For
accurate monitoring, the tide staff should be installed within the immediate
vicinity of the tide station.

The material that the tide staff is made of and its location should be
dictated by common sense. The material should be rust resistant and easy
to clean so that the scale can be read correctly. When deciding on where
to install the staff, hazardous sites (i.e. risk of destruction or deterioration)
or places that might be hidden by berthed vessels should be avoided. The
staff must also be mounted vertically. If this is impossible (slightly leaning
wharves or jetties), the graduated scale must be adjusted to indicate real
water heights.

Although not absolutely required, it is recommended that the tide staff

be installed such that its zero is at the hydrographic datum so as to avoid
misinterpretations by uninformed users.

Figure 2.3 shows an example of a tide staff. The scale is graduated in 10 cm
intervals with a series of red and black blocks separated by a blank of the
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3

2

Figure 2.3: Tide staff: the red and black blocks are 10 cm squares.

same size. The grouping of alternating sets of three blocks of the same colour
makes it easy for an observer to quickly determine the height in the metric
range. Although 10 cm may seem to be a very rough scale measurement unit,
an observer can quite easily estimate a quarter of a block (±2.5 cm) by eye–
waves and ripples are almost constantly present, so higher precision is not
unfeasible. Several tide staff readings are required to calibrate tide gauges for
vertical water level measurement.

In some cases, especially in areas with a substantial tidal range, it may be
impossible to install just one tide staff to span the entire vertical tidal range.
Two or more staffs are required in such situations: a high water staff may be
mounted on a wharf, for instance, with a low water staff installed where it
can be used at LW but is submerged at HW.

It is sometimes hard to get a tide staff reading, especially when it is being
hit by waves, so successive maximum high and low readings are usually just
averaged in such cases. However, as waves have a trochoidal (the crest height
is greater than the trough depth) rather than a sinusoidal profile, it should
be kept in mind that values obtained by this method will be higher than the
real level.

The tide staff zero mark is determined with respect to at least three fixed
onshore benchmarks. These control marks must be sufficiently far apart to
reduce the risk that they could all be destroyed at once, e.g. during harbour
work. One of them is selected to serve as the fundamental benchmark–it is
generally recommended that this be a terrestrial benchmark. Their respec-
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tive zero marks with respect to the hydrographic datum and the terrestrial
benchmark (if there is one) are recorded on a data sheet with maps and pho-
tographs provided to make it easy to find them.

3.2 • Floating tide gauge

The English engineer Henry Palmer is usually given credit for inventing
the first float tide gauge equipped for graphic recording (figure 2.4) in 1831,
but his prototype was never used to record tide levels over a long term.
In France, the hydrographic engineer Rémi Chazallon, who published a
list of tide tables for the coasts of France in 1839, devised one of the first
operational float gauges in 1842. In 1859, around 10 of these gauges were
operational along the French coasts.

This gauge can thus be considered as a conventional recorder, and it is
still widely used despite the ongoing technological advances achieved in this
domain. The float is located in the stilling well and the graphic recorder is

clockwork

pulley

float counterweight

stilling well

water level

float

recording drum

recording paper

pen

pen counterweight

 

Figure 2.4: Diagram of a floating tide gauge with a graphic recorder.
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usually located in a housing above, thus providing efficient weather protec-
tion. These instruments are reliable and easy to manage. When high accu-
racy is not essential, maintenance and operation of these tide gauges does
not require highly trained personnel.

The data logs obtained with these devices – despite the fact that they are
hampered by a number of faults associated with the stilling well, the mech-
anism and tide graph digitization – represent the almost exclusive source of
historical sea level data currently available worldwide. The recording system
has now been upgraded to generate computerized digital data.

3.2.1 • Tide graphs

Float tide gauges mainly generate time-based graphs of sea levels. Data
are plotted with a pen on a chart attached to a recording drum whose
rotation is controlled by clock. A so-called tide curve is thus traced on
the tide chart. Despite the fact that the name ‘tide graph’ is widely used, it
actually represents variations in sea level with tide generally being the main
component.

A complete recording drum rotation takes 24 h, but water height data may
be plotted continuously on the same chart for several days. The curves are
staggered because the tide is mainly affected by movements of the Moon
and a lunar day is around 50 min longer than a solar day (figure 2.5). For
a semidiurnal tide, the chart can be left on the recording drum for 2 weeks,
but thereafter the curves may partially overlap, thus causing errors when the
chart is digitized, often resulting in considerable data loss (i.e. recordings
cannot be processed).

Several sources of error can affect this type of recording:
• for the height measurement: poor vertical registration of the chart paper

on the recording drum when it is changed; variations in the water height
scale on the chart paper due to humidity or temperature variations
• for the time measurement: poor horizontal registration of the chart

paper on the recording drum when it is changed, often associated with take
up of slack on the recording drum; chart paper is not compatible with the
drum diameter, thus inducing cyclical variations in the time scale; irregular
clock functioning; and variations in drum rotation due to drive gear defects.

None of these faults are very important, but they should all be monitored
through regular careful checks.

Time measurement errors can sometimes be corrected by taking move-
ments of the Moon and Sun into account since very accurate information on
their cycles is available.

Height registration errors are harder to correct and may sometimes go
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Figure 2.5: Tide chart obtained on a recording drum with a 24 h rotation time.
Because of the 50 min difference between lunar and solar days, the chart paper can
be left on the drum for a few days without any problem of curve overlap (records from
13/11/1998 to 23/11/1998, Brest, France).

unnoticed. In fact, they can only be detected through comparisons with data
from nearby tide stations or by detection of obvious discontinuities on the
tide charts.

3.2.2 • Tide chart digitization

Direct data recording systems have been developed to overcome draw-
backs associated with manual digitization of tide charts, which is done to
fulfil the need for computerized digital data. Data digitization involves cod-
ing of the analog signal, which can be carried out in several ways. One of
the most accurate involves optical coding of the rotation of a disk attached
to the pulley, which rotates as the float moves. Another system that is also
widely used, but which is probably less reliable, uses a potentiometer where
the voltage measured on the contact is transformed into a frequency.

These systems are backed up by a magnetic tape recording (punched
paper tape was once used but has now been abandoned) or by radio trans-
mission or telephone transmission of sea level data to a remote recorder. All
of these refinements require special skills, and experience has shown that
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hardcopy graph paper recording is essential for data recovery following a
breakdown.

Tide chart digitization generally involves hourly water height data logging,
which is usually sufficient for tide analysis. In centres where many tide charts
are processed, a digitizer may be used to enable direct logging of sea level
data onto a computer.

The recordings should be accompanied by a tide chart monitoring sheet
(figure 2.6) upon which the operator’s tide staff or light probe water level
readings obtained at given times are recorded.

Poor interpretation of these monitoring sheets, especially when they have
not been carefully filled in, is a relatively important source of error.

The fact that manual or semiautomatic digitization of tide charts is gener-
ally a tedious routine task is another shortcoming, i.e. errors may be gener-
ated as the operator’s motivation wanes.

3.2.3 • Functional control

The measurement accuracy mainly depends on how carefully the different
functional control tests at the tide gauge site have been carried out. As
already noted, considerable negligence in this field can be detrimental to the
data quality and may even lead to substantial data loss.

A 2 to 3 day inspection rate is recommended. Weekly inspections, which
is common practice, should be considered as a second-best option.

The inspection operation simply involves comparing the tide chart data
with recognized accurate independent indicators. Any timekeeping unit
(usually the operator’s watch) can be used as reference for the time checks.

Special care should be taken when changing the chart paper. After
installing and adjusting a new chart sheet on the recording drum and setting
the pen at the exact required height, the operator should initiate the tracing
prior to noting the respective watch and tide chart times so as to avoid time
setting errors associated with any play in the recording drum drive gear.

During intermediary verifications, the tide gauge will only be adjusted
when there is an obvious malfunction, other than for time and height setting
adjustments.

The height setting is normally checked by comparison with tide staff

readings. The light probe is a graduated metallic tape fitted with an electric
contact at the base which closes when it comes in contact with water and
illuminating a light.

These two checks are complementary and recommended. The light probe
enhances the accuracy, but it only tests part of the set-up as it is only used in
the stilling well. The tide staff provides direct measurements and is thus an
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Figure 2.6: An example of a tide chart monitoring sheet (from 13/11/1992 to
23/11/1992, Brest, France).

ideal reference. However, as noted above, the best achievable accuracy for a
single reading is±2.5 cm due to the presence of waves and ripples.

The results of all of these checks are listed on the tide gauge monitoring
sheet (figure 2.6).

3.2.4 • Detection of measurement errors

Measurement errors can be avoided by preventive maintenance and reg-
ular monitoring, but tide logs may sometimes be obtained from stations
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Figure 2.7: Van de Casteele test: for a tidal cycle, the curve illustrates variations in the
deviation (X-axis) between an MCN ultrasonic sensor measurement and a float tide
gauge (OTT 20030) measurement plotted against the water height measured by MCN
(Y-axis). The difference would be nil if there was no fault.

that are not in compliance with required standards. Some errors are hard to
detect (stability of the vertical control datum), but other floating tide gauge
malfunction faults can be identified by different tests, including the Van de
Casteele test (figure 2.7).
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3. Conventional tide recording systems

The vertical control datum stability warrants special attention because
errors in the corresponding measurements are hard if not impossible to
detect, especially if they are permanent or cyclical and where there is not
regular monitoring. The main causes are poor height adjustment of the chart
paper on the recording drum and vertical movements in the system support
(e.g. wharf) or in the attachment fixtures. Obviously we will not get into
an indepth discussion on the fact that ground movements due to seismic
or tectonic activity could be responsible for measurement errors. Indeed,
it is understood that the accuracy of a tidal reading is dependent on the
stability of the tide gauge support, but on condition that this support does
not undergo modifications due to human activities or inclement weather
conditions (storms, flooding). It is crucial to focus on modifications that
cause vertical movement in the benchmarks, especially those located in the
vicinity of recent harbour structures. It is thus essential to have several
benchmarks in the area that are reasonably separated.

The Van de Casteele test identifies most other floating tide gauge errors
and faults. A light probe is required for this operation. The test involves
monitoring freeboard in the stilling well throughout a tidal cycle and com-
paring the resulting series of freeboard values with data from the tide gauge
that is being checked. The sum of the two measurements should remain con-
stant if the tide gauge is functioning properly.

This test can also be carried out with two tide gauges of the same type or
different types, with one serving as reference, and with both gauges measur-
ing the water level in the same well (if it is large enough), or levels in two
neighbouring wells. The measurement difference should remain constant in
this comparison, i.e. nil when the recorders have datums representing the
same reference. A comparison of readings from two tide gauges (figure 2.7),
i.e. an OTT float gauge and an MCN ultrasonic probe (reference), provides
an example of a common float tide gauge fault. A scale factor change occurs
after a certain height, which is likely due to an overlapping coil on a cable
reel. In this example, the float tide gauge gives a reading that is lower than
that of the ultrasonic probe after around 4.5 m height, with the modulus of
this deviation increasing by about 2.5 cm/m.

The Van de Casteele test can also be used to detect:
• slack in the mechanism
• a wrong scale factor: a graphic scale that differs from the reduction

factor
• something attached to the float cable or pen cable
• interference or blockage of the float movement at a certain water level in

the stilling well
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• cable slippage on the pulley.
The source of a potential tide gauge fault can often be readily identified by

interpretation of a Van de Casteele test graph.

4 • Modern measuring systems

Few physics disciplines benefit from such a broad range of measuring
systems, several of which have been the focus of development and applica-
tions for tide measurement. The system to be used is selected on the basis
of various factors, including the overall cost (material and maintenance) is
often the decisive factor, sometimes to the detriment of the performances
required.

The nature of the site where the device is to be installed is another factor
to consider. A sensor and recorder suitable for coastal sites – where a
stilling well may be installed (harbours, estuaries, shallow water areas) to
provide weather protection for these new systems – will differ from those
suitable for offshore sites (continental shelf and deep oceanic waters) for
which additional equipment is required to allow tide gauge immersion and
recovery.

4.1 • Tide pressure gauge

Pressure gauges appeared with the advent of pneumatic tide gauges, i.e.
mercury differential pressure gauges, which measure the difference between
the pressure of air released at specific depths and atmospheric pressure
measured on land.

However, it was not until technological advances gave rise to the develop-
ment of small-scale pressure gauges – especially strain gauges and piezoelec-
tric quartz crystal sensors – that these devices were widely adopted. It thus
became possible to design deep-sea tide gauges (so-called bottom-mounted
tide gauges) with enough energy self-sufficiency to enable digital data log-
ging for periods extending up to and even beyond one year. These devices
are widely used in hydrography for measuring tide heights around sound-
ing sites or for determining boundary conditions of digital tide and current
models in specific areas on continental shelves (for depths of generally less
than 100 m).

4.1.1 • Measurement principle

Let us consider a bottom-mounted tide pressure gauge, where:
• H: is the depth at the measured site (mean gauge depth)
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• h(t): is the sea level variation, as a function of time t and zero mean
h(t) = 0
• H+ h(t): is the water height above the gauge
• p(t): is the pressure measured by the gauge
• pa(t): is the atmospheric pressure at sea level
• r: is the mean sea water density (as a function of the temperature and

salinity, with the pressure ignored for depths of less than a few hundred
metres) over the height H+ h(t)
• g: is the acceleration due to gravity.
The pressure given by the gauge is thus equal to the sum of the atmo-

spheric pressure and the hydrostatic pressure, or:

p(t) = pa(t)+ rg[H+ h(t)]

The water height above the bottom-mounted tide pressure gauge is there-
fore:

H+ h(t) = [p(t)− pa(t)]/rg (2.2)

Some gauges measure the differential pressure p(t)−pa(t), which is equal
to the hydrostatic pressure of the water column. The differential sensor
requires atmospheric pressure data, as determined through an air intake,
but this is difficult when the gauge is submerged offshore. Moreover, the
pressure p(t) is the key factor for some applications, especially in the physical
oceanography field. Information on the three parameters g, r and pa(t) is
required for studies of offshore sea level variations h(t) on the basis of the
seafloor pressure p(t).

The gravitational acceleration g varies with the latitude L according to the
following formula (in m/s2):

g = 9.7803185(1+ 0.005302357 sin2 L− 0.0000059 sin2 2L) m/s2

Its intensity thus increases by approximately 0.5 % from the Equator to
the Pole. For the same hydrostatic pressure variation amplitude, this corre-
sponds to a relative tidal fall of 5 mm/m. If we take a g value corresponding
to a mean latitude, the maximum possible error is 2.5 mm/m tidal fall. This
is quite substantial, especially as it has a marked effect on the accuracy of the
depth H determination, which is a crucial factor in climate change studies
(pending corrections to account for potential tectonic movements).

The mean density r of sea water is around 1.028 · 103 kg/m3, and is a
function of the temperature, salinity and pressure. As high pressures are
involved, the compressibility of sea water should be taken into account in
deep sea areas, whereas the pressure has little effect on r in the surface layers.
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II. Tides and their measurement

Figure 2.8 shows curves plotted at different salinity levels, while not
accounting for the adiabatic compression of sea water, with a gravity value
of g = 9.81 m/s2. For example, a hydrostatic pressure of 104 Pa for a water
column at 4°C corresponds to a height of 101.94 cm for fresh water (S = 0)
and 99.34 cm for sea water at S = 37 salinity, i.e. an error of 2.6 cm. Note
that the same type of error arises when assessing sea levels on the basis of
water heights in a stilling well.

4.1.2 • Pneumatic or bubbler tide gauges

This is one of the first types of tide gauge that takes the relationship
between the water height and the corresponding hydrostatic pressure into
account. With this system (figure 2.9), a low controlled flow of air or
nitrogen is maintained in a small diameter tube (restricted flow with little
pressure loss) until the selected level is reached, i.e. must be below the lowest
LW. At this level, the tube is connected to the upper section of a cylinder
that is sealed on top and open at the bottom, and that also has a very small
diameter opening at mid-height. The low constant flow of gas in the tube
ensures a continuous release of bubbles from this small opening. Gas is
released from a supply cylinder whose discharge pressure equalizes that
associated with the water height and the atmospheric pressure.

The gas pressure is measured relative to the atmospheric pressure in the
tide station using a mercury differential pressure gauge, and then trans-
formed into water heights and recorded on a chart.

Bubbler tide gauges have major advantages, i.e. they are easy to maintain
and do not require a stilling well. The main shortcoming is that waves
upset their performance. Waves induce pressure surges, causing a rise in the
water level in the cylinder, thus hampering air bubble release. Moreover, as
noted with respect to tide staff readings, the skewed wave patterns, between
crests and troughs, lead to errors in water height deduced from this pressure
measurement. This problem can be overcome by increasing the air flow, but
there is a risk of flow turbulence in the tube. When this happens, there may
be pressure loss in the supply pipe, thus increasing the measurement error.
A compromise must be found between the two types of errors induced by
surface disturbance and pressure loss. Flow through the tube is harder to
regulate when the pipe is long. In practice, it is thus recommended that the
pipes be no longer than 200 m.

These tide gauges are often used in estuaries because they are easy to
install. However, river flow can induce substantial vertical density varia-
tions. These data, without simultaneous vertical density distribution mea-
surements, are clearly unsuitable for applications requiring high accuracy.
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Figure 2.9: Bubbler tide gauge: easy to use, but very careful monitoring is required to
obtain accurate data.

Apart from these operating restrictions (estuaries and sites with rough sea
conditions), these tide gauges can supply high quality data when appropri-
ately calibrated.
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4. Modern measuring systems

4.1.3 • Tide gauges with a strain gauge or piezoelectric quartz crystal sensor

Strain gauges and piezoelectric quartz crystal sensors are products of tech-
nological progress and are the main instruments currently used to measure
pressure in deep ocean waters.

Electrical resistors of strain gauges function with both pressure and tem-
perature, and their key feature is that they are inexpensive. These gauges are
temperature sensitive and a supply voltage is required to measure their elec-
trical resistance, so they have to be carefully calibrated and monitored and
have a fully regulated electrical supply in order to be able to provide accu-
rate pressure readings. These gauges can thus generate high quality measure-
ment data only if they are managed by qualified organizations, otherwise this
data may be useful for some applications but not for hydrographic or oceano-
graphic purposes.

The most accurate tide gauges use a quartz crystal measurement sensor
whose resonant frequency varies with the pressure applied. These sensors
are used in bottom-mounted tide gauges as they provide millimetric reso-
lution at depths of several hundreds of metres. They are also temperature
sensitive, but to a lesser extent than strain gauges, and the temperature-
dependent calibration coefficients can be considered to remain constant for
several years. However, this correction being necessary, it is recommended
that the gauge be used to record pressure directly. This is done by integrating
a temperature sensor in tide gauges with a piezoelectric quartz crystal sensor,
and an onboard software program corrects for the effects of temperature on
the signal frequency.

Note, however, that with these sensors there is a slight calibration drift
associated with the mean operational pressure, which is especially marked
when the gauges are submerged in very deep waters. This fault cannot be
modelled because it differs between sensors and depends on their deploy-
ment history. In practice, this slowly evolving defect does not impact height
fluctuation measurements, but it hampers studies on very long-term varia-
tions in mean levels. This drift can be detected by performing a pre- and
post-data recording calibration, but this defect cannot be corrected since it
is not linear.

Advanced computer systems provide considerable data acquisition, log-
ging and processing flexibility, so tide gauges submerged far offshore can
thus remain completely self sufficient for several months or even years. This
type of tide gauge is also quite easy to use. The instrument is integrated
in a structure (figure 2.10) that includes ballast for submersion, a ‘release-
transponder’ and a buoy which is large enough for the gauge to float without
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subsurface buoy

cage

ballast

tide gauge

releaser-transponder

Figure 2.10: Bottom-mounted tide gauge: mooring structure with a release and
recovery system. This self-sufficient tide gauge is very reliable and generates highly
accurate data on deep sea pressure variations.

ballast. The buoy cannot be deformed by the pressure and is equipped with
a light beacon and sometimes a radar reflector for surface tracking. The
transponder facilitates tracking of the tide gauge offshore. The ballast is left
on the sea bed after remote acoustic controlled release of the buoy support-
ing the cage (tide gauge and releaser) by an operator in a tide-gauge recovery
vessel.
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4. Modern measuring systems

4.2 • Airborne depth sounder tide gauges

Advances in time measurement techniques and in acoustic and elec-
tromagnetic transducer design have made highly accurate distance mea-
surement possible, but acoustic and electromagnetic wave propagation
corrections are required. This progress has benefited tidal analysis and sev-
eral new types of tide gauge have been developed for sea level measurement.

4.2.1 • Ultrasonic airborne depth sounder tide gauges

In the 1980s, the Naval Oceanographic Survey (NOS) carried out a study
to determine ways to modernize the existing American tide-gauge network.
This study revealed that remote airborne acoustic ranging possibly provided
the best tradeoff between the sea level measurement quality and the overall
network costs (including equipment acquisition, implementation and main-
tenance over a 20 year period). The accuracy requirements at the time were,
however, not very demanding as compared to current requirements of the
scientific community.

These ultrasonic tide gauges can be deployed without protection if there
is sufficient transmission power, but they are often installed in stilling wells
to provide weather protection, thus increasing their service life, while also
ensuring a flat water surface to reduce sound reflection loss. Potential well
wall irregularities can cause artifactual reflections. It is therefore recom-
mended that sound beams be channelled through smooth rigid tubes, e.g.
PVC. The many reflections on the walls of such tubes are not problematic as
long as a careful calibration is performed, which is necessary in any case.

The measurement principle is simple, i.e. an above-surface transducer
transmits a downward ultrasonic signal and then picks up the reflected
signal. Given the sound velocity in air c, the measurement of the roundtrip
wave transit time Dt gives the distance l, as well as the freeboard between the
transducer and the surface: l = cDt/2

Where d is the elevation of the base of an acoustic transponder in relation
to a benchmark (usually the hydrographic datum), the sea level height h is
expressed as:

h = d− l = d− (c · Dt/2) (2.3)

With sufficient accuracy for our applications, the wave velocity in air c (in
m/s) is given by the following formula, where T is the temperature (°C), pa
is the atmospheric pressure (hPa) and w is the ambient relative humidity.

c = 331.2 · [1+ 0.97 · (w/pa)+ 1.9 · 10−3T] m/s
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II. Tides and their measurement

Experience has shown that relative humidity variations are negligible in
a closed well as the air layer is almost completely water saturated. However,
given c0 = 331.2, we have:

∂ l

∂T
=

∂ l

∂c

∂c

∂T
= 1.9 · 10−3 c0

c
l ≈ 1.9.10−3l m/°C

As equation (2.3) gives ∂h = −∂ l , this corresponds to an opposite sign
error on h of around 2 mm/m of the freeboard l and per °C.

Two methods are used to offset this marked temperature effect.
• The first involves setting a reflector under the probe at a known distance

l0. The wave velocity can be obtained directly on the basis of the transit
time Dt0 measurement (roundtrip of the signal between the transponder and
reflector):

c =
2 l0
Dt0

⇒ l = l0
Dt

Dt0
.

• The second involves placing a temperature sensor alongside the trans-
ducer and calculating the acoustic wave velocity as a function of the mea-
sured temperature.

Both of these methods have specific faults. The first gives the mean
acoustic wave velocity between the probe and reflector, but not for the
entire well freeboard. The second method is even less accurate because
it only estimates the wave velocity at one level. Various experiments have
shown, however, that variations in temperature and its vertical gradient in
the stilling well induce substantial water level measurement errors, especially
when diurnal heating of the tide gauge structure boosts the air temperature
within the well. This phenomenon causes a temperature gradient that is not
detected by the sensor. No really suitable solutions to this problem have been
found.

Tailored tide gauges have been developed to fulfil different ocean dynam-
ics research needs. These gauges have watertight temperature sensors at dif-
ferent levels, so they are not hampered by being submerged. However, these
special tide gauges are not widely used because they are too expensive.

4.2.2 • Ultra-high frequency radar tide gauges

For distance measurement, these electromagnetic probes run on the same
principal as the gauges discussed immediately above, except that they pro-
cess electromagnetic rather than ultrasonic signals.

The advantage of using ultra-high frequency (UHF) tide gauges in coastal
tide stations is that the wave velocity taken into account is constant (light
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waves), so short-distance water height measurements are thus not suscepti-
ble to environmental variations. These tide gauges meet all accuracy require-
ments, but their installation and calibration is sometimes complicated. An
above-water structure is nevertheless required to enable vertical pointing of
the transducer. This structure does not have to be elaborate because the data
logging and processing system may be remotely located and thus protected.

As the technology advances, these tide gauges are being developed at a fast
pace to meet the rising need for accurate water height measurements, so they
are being installed in many tide stations.

4.3 • Altimeters

The present book is not specifically aimed at boosting readers’ insight into
the tidal phenomenon worldwide, but it should still be noted that, thanks to
the excellent quality of satellite-borne radar altimeters, highly accurate sub-
decimetre sea level measurements have now been obtained for more than
two decades. The vertical distance between the satellite and the ocean sur-
face is measured as described for the two previous systems. This involves
measuring the roundtrip vertical transit time Dt of the electromagnetic pulse
transmitted by the onboard radar and reflected back from the ocean surface
(with the reflective surface being around 10 km2 to 20 km2). As this wave
is transmitted over a long distance (around 2 000 km) through a heteroge-
neous environment – especially through the ionosphere and troposphere –
its velocity c is not exactly the same as that of a light wave in a vacuum. Cor-
rections for the ionospheric and tropospheric (water vapour) effects on the
propagation of this electromagnetic pulse are therefore necessary. The verti-
cal distance z between the satellite and the ocean surface is:

z = cDt/2

Since, by orbital satellite tracking, its altitude ze (figure 2.11) can be
determined in a certain geocentric reference line, the height of the ocean
surface he in the same reference line is the difference between the two levels:

he = z− ze

Different techniques are used for accurate satellite positioning, such as
laser ranging, GPS and the DORIS system from stations located beneath the
satellite track. These stations are positioned with centimetre accuracy with
respect to consistent station marks within the International Terrestrial Ref-
erence System (ITRS). The sea level is determined relative to these reference
marks.
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The correspondence between this altimetric sea level measurement and
conventional references (benchmarks, mean level, chart datum) raises the
issue of the relative positions of these different references. Orbital tracking
stations, especially for GPS and D, are thus set up in the vicinity of
coastal tide stations.

The altimeter is calibrated by comparing the satellite water level reading
with the tide graph reading with reference to the same datum. There is a
problem, however, satellite altimetry data are only suitable beyond a certain
distance from the coast (around 10-20 km), for at least two reasons. The
first is technical, i.e. reflection of the altimetric signal is upset by the simul-
taneous presence of earth and water, while the second is associated with the
rapid variation in the geoid shape at the sea-land interface. Interpretation of
the error between the coastal tide graph reading and the first reliable satellite
reading is not easy without prior knowledge on the local geoid shape.

Onboard satellite altimeters measure the sea height at specific points over
an interval of a few days. The satellite orbit tracks cross the Equator at an
angle of around 60° and form a regular network with a grid of a few hundred
kilometres, which varies according to the latitude. Data for one point are
thus only available at time intervals that are much longer than basic tide
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Figure 2.11: Satellite altimetry measurement of the ocean surface.

64



4. Modern measuring systems

intervals. These constraints generate many data processing issues, especially
the problem of multiple tidal spectrum aliasing distortion. The lack of
adequate temporal sampling at a fixed point could be partially overcome by
taking seamless spatial sampling throughout the orbit and readings at track
intersection points into account using tailored analysis methods.

Despite these problems, this remote sensing technique generates invalu-
able information, with an accuracy of a few centimetres, for worldwide geo-
physical and meteo-oceanic research. Radar altimetry data can thus be used
for the determination of several parameters such as the marine geoid, wave
height and wind speed, as well as the discrepancy between the ocean surface
and the geoid.

This ocean surface topography (relative to the geoid), which is especially
useful for determining surface currents, is only relevant after a highly accu-
rate tide correction, especially with respect to the altimetric variability. In
the light of these advances in satellite altimetry, the scientific community has
renewed its interest in tide measurement.
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III

Tide-generating

force and potential

The heuristic approach of Newton and Laplace to respectively describe the
tide-generating force and potential is not covered in this chapter. Instead we
use contemporary mathematical and mechanical formulations to quantify
these factors–calculation of the tide-generating force with its geometric con-
struction (Proctor’s rule), along with expansion of the potential in Legendre
polynomial series and breakdown into ‘tidal species’ as defined by Laplace.

1 • Tide-generating force

The term ‘force’ very often turns up in the proofs presented in this section.
To avoid any misunderstandings, this term should be taken as meaning the
acceleration of a liquid object M per unit mass. After formulating the force
exerted by a celestial body A, Proctor’s geometric construction provides an
evaluation of the respective actions of the two tide-generating astronomical
bodies (Moon and Sun), along with the magnitude of their ratio.

1.1 • Calculation of the tide-generating force exerted by a celestial body

The tide-generating force formula presented hereafter represents the
action of a single celestial body, i.e. the Moon or Sun, with the total force
of course being the sum of both.

Let us consider two orthonormal reference frames:
• an inertial (absolute) reference frame having the centre of mass of the

Sun-Earth-Moon system as origin, e.g. an ecliptic reference frame (see
Appendix A); this reference frame is not absolutely inertial, but we may
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III. Tide-generating force and potential

consider it as such because no dynamic events resulting from its acceleration
have been detected to date with respect to any terrestrial movements;
• the second is linked with the Earth and revolves with it (relative refer-

ence frame), it has the centre of mass T as origin: or, for instance, the equa-
torial reference frame (having the meridian of point M as origin).

As ocean tides occur on Earth, the acceleration of object M thus has to be
calculated in this relative reference frame.

Where−→vT is the vector of the Earth’s northward-oriented rotation parallel
to the polar axis (clockwise west-to-east rotation). Based on standard con-
ventions, we have:
• in the absolute reference frame (index S), the absolute velocity and

acceleration vectors for points T and M, respectively defined by:

dS(
−→
ST)

dt
=
−→vS (T) and

d2
S(
−→
ST)

dt2 =
−→
gS(T),

dS(
−→
SM)

dt
=
−→vS (M) and

d2
S(
−→
SM)

dt2 =
−→
gS(M) ;

• and in the relative reference frame (index T), the relative velocity and
acceleration vectors for point M, defined by:

dT(
−→
TM)

dt
=
−→vT(M) and

d2
T(
−→
TM)

dt2 =
−→
gT(M).

Derivation of the vectorial relation
−→
TM =

−→
SM−

−→
ST with respect to time t

in the absolute reference frame, gives:

dS(
−→
TM)/dt = −→vS (M)−

−→vS (T) (3.1a)

Based on the velocity law in the relative reference frame, this relation
(3.1a) becomes:

dS(
−→
TM)/dt = −→vT(M)+−→vT ∧

−→
TM (3.1b)

Considering that −→vT is constant, thus not time-dependent, and by deriv-
ing the previous equation (3.1b) with respect to time t, we obtain:

dS
−→vT(M)/dt = −→gT(M)+−→vT ∧

−→vT(M) (3.2)

=
−→
gT(M)+−→vT ∧ [−→vT(M)+−→vT ∧

−→
TM] (3.3)

By deriving the same equation (3.1a) as a function of time t, and taking
relation (3.3) into account, we get:

−→
gS(M)−−→gS(T) = −→gT(M)+−→vT ∧

−→vT(M)+−→vT ∧ [−→vT(M)+−→vT ∧
−→
TM]
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The acceleration −→gT(M) of object M in the terrestrial reference frame
could thus be expressed as:

−→
gT(M) = −→gS(M)−−→gS(T)− 2−→vT ∧

−→vT(M)− |−→vT|
2−→RM (3.4)

where point R represents the projection of point M on the polar axis
(figure 3.1).

P

M

R

LT

Equator

meridian of the site

Greenwich meridian

ω

Figure 3.1: The terrestrial reference frame (relative reference frame), where T is the
Earth’s centre, M is the object of unit mass at latitude L, and R is the projection of M on
the polar axis.

In relation (3.4):
• the term−→vT∧ (−→vT∧

−→
TM) = |−→vT|

2−→RM is the centrifugal force due to the
Earth’s rotation applied at point M;
• component 2−→vT ∧

−→vT (M) represents the so-called acceleration of Cori-
olis which deviates (to the right in the Northern Hemisphere and to the left
in the South) particle M at velocity−→vT(M);
• acceleration −→gS(T) is the result of the sum of external forces applied

on T–with the only significant ones being the gravitational forces exerted
by each tide-generating celestial body. We will first investigate the action
of a single celestial body, so acceleration −→gS(T) will here be assimilated to
the force

−→
F A/T exerted by celestial body A on the unit mass object in T.
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III. Tide-generating force and potential

According to the law of gravitational attraction:

−→
g S(T) ≡

−→
F A/T = k

mA

r2
A

−→u (3.5)

where:

k is the universal gravitational constant

mA is the mass of celestial body A

rA is the distance TA of the centres (Earth-celestial body)
−→u is the unit vector of axis

−→
TA.

Finally, the term −→gS(M) is the sum of external forces applied to object M
of unit mass. By adopting the acceleration-force assimilation, these forces
are:
−→
∇ p(M)/r: is the pressure gradient per mass unit, where r is the density

and p(M) is the pressure in M, with
−→
∇ representing the ‘gradient’ vectorial

operator of components (∂/∂x, ∂/∂y, ∂/∂z) in a Cartesian system;
−→
F f (M): represents friction forces that are cancelled out at−→vT(M);
−→g (M) = −g

−→
z (M): is the gravitational force exerted by the Earth, where

−→
z is the unit vector of the ascending vertical in M (

−→
TM = aT

−→
z , with aT

being the Earth’s radius); where mT is the mass of the Earth, and the value of
gravity g expressed by:

g = k
mT

a2
T

; (3.6)

−→
F A/M: is the gravitational force exerted by celestial body A on M.

The sum of forces in M is thus expressed by:

−→
g S(M) =

−→
∇ p(M)

r

+
−→
F f (M)+

−→g (M)+
−→
F A/M

Considering an object of unit mass M at rest, we obtain velocity −→vT(M),
which is of course nil, thus voiding the Coriolis force 2−→vT ∧

−→vT(M) and the
friction forces

−→
F f (M), as well as the horizontal constituents of the fluid pres-

sure gradient. According to Archimedes principle (hydrostatic pressure), the
vertical constituent of the pressure gradient is balanced by ‘ordinary grav-
ity’−→g (M) − |−→v T|

2−→RM, including the centrifugal force associated with the
Earth’s rotation.

By assimilating the acceleration−→gT(M) with the force
−→
FA(M) on object M

of unit mass, equation (3.4) becomes:
−→
FA(M) =

−→
F A/M −

−→
F A/T (3.7)
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1. Tide-generating force

Equation (3.7) expresses the ‘tide-generating force’
−→
FA(M) exerted by

celestial body A at point M–it is the difference in gravitational attractions
exerted by the celestial body at point M (constituent

−→
F A/M) and at the

Earth’s centre T (constituent
−→
F A/T).

Note that each of these two constituents defines a force field of a different
nature:
• Force

−→
F A/T, the tractive force in the Earth reference frame, is identical

at all points M and thus defines a force field of constant intensity in the
direction of axis

−→
TA of unit vector−→u .

• However,
−→
F A/M, which is the attractive force exerted by celestial body

A at all points M on Earth, is a function of the position of the point. This
constituent which, for each point, is directed towards axis

−→
MA of unit vector

−→v , thus defines a radial force field of variable intensity. Where D represents
the distance MA, this force is expressed according to the law of gravitational
attraction by a relation equivalent to (3.5) for point T:

−→
F A/M =

kmA

D
2
−→v .

Equation (3.7), which gives the tide-generating force exerted by a celestial
body, can thus be expressed by:

−→
F A(M) = kmA

(
−→v

D
2 −

−→u

r2
A

)
(3.8)

Note that by this formulation the force field accepts
−→
TA as axis of revolu-

tion. Hereafter we will look at how a very simple geometric construction,
known as ‘Proctor’s rule’ (after the English astronomer, 1837-1888), can be
implemented to come up with a vector that is proportional to the force, and
to thus deduce the magnitude that will be expressed when gravity g is set at
unity.

1.2 • Geometric construction of force–Proctor’s rule

Where point T is the Earth’s centre, let us consider the vertical plane of
celestial body A at point M with u being the geocentric zenithal distance
(figure 3.2).

Figure 3.3 clearly illustrates Proctor’s construction in the same plane as
shown in figure 3.2.

B is the intercept of axis
−→
TA with circumference centre point A and radius

AM. The line parallel to TM from point B intersects AM at C.
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III. Tide-generating force and potential

M

T A

∆

u

v

aT

rA

→

→θ

Figure 3.2: Vertical plane of celestial body A at point M, where aT is the Earth’s radius
and u is the geocentric zenithal distance of the celestial body.

M
C

E

T B D F

θ

∆

aT

rA

v
→

u
→

A

Figure 3.3: Proctor’s construction: the tide-generating force is proportional to vector
−→
MF.

Let us use the same method to construct the two successive figures BCD
and DEF homothetic to TMB. This gives the following equalities: rA = AT;
D = AM = AB; AC = AD; and AE = AF.

When Thales’ theorem is applied while taking these equalities into
account, we get:
• for triangles ATM and ABC:

AC

AB
=

AM

AT
⇒ AC =

D
2

rA
;

• for triangles ATM and ADE:

AE

AD
=

AM

AT
⇒ AE =

D
3

r2
A

.
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1. Tide-generating force

Since AF = AE, vector
−→
FA is expressed by:

−→
FA =

D
3

r2
A

−→u .

The vectorial relation
−→
MF =

−→
MA−

−→
FA gives rise to:

−→
MF = D

3

(
−→v

D
2 −

−→u

r2
A

)
.

Vector
−→
MF is thus proportional to the tide-generating force

−→
F A(M) given

by (3.8). This force can also be expressed by the so-called Proctor’s rule
equation:

−→
F A(M) =

kmA

D
3
−→
MF. (3.9)

When celestial body A is considered at infinity, directions TA and MA
become parallel, thus simplifying this construction (figure 3.4). In this
vertical plane of the celestial body, let us consider an orthonormal system
with T as origin and

−→
TA as x-axis, then the x-axis of point F, i.e. the

projection of M on this axis, is equal to threefold that of point B. This
approximation, which is often accepted for the Moon, also a fortiori applies
for the Sun.

M C E

T B D F

aT
Towards celestial body A

θ

Figure 3.4: Simplification of the construction of vector
−→
MF where the celestial body is

at infinity: vector
−→
TF is threefold greater than

−→
TB, and B is the projection of point M on

−→
TA.

In the orthonormal reference frame described above, the matrix represen-
tations of constituents of

−→
TM and

−→
MF are respectively defined in equation

3.10:
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III. Tide-generating force and potential

−→
TM⇒

[
aT cos u

aT sin u

]
−→
MF⇒

[
2aT cos u

−aT sin u

]
(3.10)

The modulus of
−→
MF is readily determined, and is equal to:

MF = aT

√
1+ 3 cos2

u.

In an orthonormal reference frame, let jMF be the vertical constituent (posi-
tively oriented towards the zenith) and hMF the horizontal constituent of the
−→
MF vector:

jMF = |TF| cos u− aT = aT
(
3 cos2

u− 1
)

hMF = |TF| sin u =
3

2
aT sin 2u

(3.11)

With approximation D ≈ rA[1 − (aT cos u/rA)] ≈ rA and with equation
(3.6) representing g, Proctor’s rule (3.9) may be applied to evaluate modulus
FA(M) of the tide-generating force of celestial body A at point M, or:

FA(M) ≈ g
mA

mT

(
aT

rA

)3√
1+ 3 cos2

u (3.12)

The distance rA from the Earth-celestial body centre points is not constant
since the orbit is elliptical. The mean distance r0 can be introduced in order
to determine the parallax iA of celestial body A, whose value is around unity:

iA =
r0

rA
(3.13)

Then:

xA =
mA

mT

(aT

r0

)3
(3.14)

Modulus FA(M) of the tide-generating force could first be formulated as:

FA(M) ≈ gxAi3
A

√
1+ 3 cos2

u (3.15)

The same result (see Appendix B) could be obtained from the tide-
generating potential, expressed in Legendre polynomial series and restricted
to its first term in P2(cos u).

The characteristics of this force may also be assessed through equations
(3.12) and (3.15).
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1. Tide-generating force

1.3 • Main features of the tide-generating force

These relations, which are obtained by Proctor’s rule (3.9), show:
1. that the tide-generating force is proportional to the mass of celestial

body mA and the reciprocal of the cube of its distance rA;
2. that its spatial distribution at a given time revolves around axis

−→
TA as it

is a function of the geocentric zenithal distance u of celestial body A with the
term

√
1+ 3 cos2

u, which is never cancelled out at the Earth’s surface and
whose value ranges from 1 to 2.

Note also that the modulus of the horizontal constituent of this force is
proportional to the hMF modulus given by (3.11). This modulus varies as
sin 2u and is maximal for u values of 45° and 135° and nil for u = 0° and
90°, i.e. on the

−→
TA axis and on the entire great circle upon which the celestial

body is visible on the horizon.
At a given time, this rotational force field (around

−→
TA) gives a distribution

on the Earth’s surface that may be studied along a parallel of latitude L where
rising and setting of the celestial body (on the horizon) can be observed
during the day (figure 3.5). On this parallel, points M and M′ are respectively
on the upper and lower meridians of the celestial body. The corresponding

moduli
−→
F and

−→
F′ reach relative maxima. In figure 3.5, latitude L is the same

sign as the declination d, so the upper force maximum is obtained in M. The
maximum force is in M′ if the L and d values have opposite signs. When the
Equator is the considered parallel, or when the declination of the celestial

body is nil, the two forces
−→
F and

−→
F′ have identical moduli.

On the ‘celestial body on the horizon’ great circle, the horizontal con-
stituent is nil, so the corresponding tide-generating force is directed towards
the Earth’s centre and the minimum absolute amplitude for the considered

celestial body is reached. This is the case for force
−→
F′′ applied in M′′, at the

intersection of this circle and the visible part of the parallel of latitude L in
figure 3.5.

Point P′, at the intersection of the meridian of the celestial body and the
great circle of the ‘celestial body on the horizon’, defines latitude LN of the
northern polar circle of celestial body A for declination d. In figure 3.5, the
northern polar circle is at d+ LN = 90° whereas latitude LS of the southern
polar circle is d − |LS| = 90° (southern latitudes are negative numbers). At
all parallels whose latitude L fulfils condition |d| + |L| > 90°, the celestial
body can no longer be seen on the horizon. The minimum absolute force is
no longer reached, and the secondary maximum force dissipates to merge
with the relative minimum on this parallel.
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III. Tide-generating force and potential

The terms
√

1+ 3 cos2
u and (iA)3 are around unity. When gravity g is

taken for the unit of force, expression (3.15) shows that the magnitude of the
tide-generating force of each celestial body is represented by its parameter
xA defined by relation (3.14), where r0 is the mean Earth-celestial body
distance. Where the Earth’s mass is mT = 5.98 × 1024 kg and its equatorial
radius is aT = 6.378 · 103 km, we obtain the following table:

Celestial body mA/mT aT/r0 (aT/r0)
3

xA

Moon 1.23 · 10−2 1.66 · 10−2 4.57 · 10−6 5.62 · 10−8

Sun 3,33 · 105 4.26 · 10−5 7.75 · 10−14 2.58 · 10−8

The fraction of the tide-generating force due to the Moon is thus slightly
more than twofold greater (exactly 2.18-fold) than that due to the Sun.
Despite its small mass, the Moon has a greater tide-generating influence
because of its close relative proximity to the Earth, with a power law index
of 3 according to the aT/rA ratio.

The lunisolar impact on a particle of unit mass is thus very slight relative
to the gravity g ≈ 10 m · s−2, with a maximum of around:

10−7
· g ≈ 10−6 m · s−2

= 1 mm · s−2

celestial body on horizon

polar circle

meridian of the celestial body

towards the celestial body
equator

L

M

P

P'

M'

M"

F"

T

F

pole

F '

δ

θ

•
•

•

•

•

Figure 3.5: Spatial distribution of the tide-generating force associated with celestial
body A at a given time on the parallel of latitude L, at points M, M′ and M′′ (see
explanations in text).
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2. Tide-generating potential

The vertical constituent of this force is therefore negligible with respect to
g. Only the horizontal constituent can set liquid particles in motion. It is
quite astonishing that such low acceleration has been noted to have a major
role in the oceanic tidal phenomenon.

2 • Tide-generating potential

For many problems involving vector fields, substantial simplifications are
possible and greater physical insight may be gained into the phenomenon
when there is a likelihood that a potential exists (see Appendix B). In the
previous section, we analysed the spatial distribution of the tide-generating
force over the Earth’s surface for a given time and celestial body. This distri-
bution was shown to be representative of a force field where the direction

−→
TA

is the axis of rotation of the system.
For each celestial body, the tide-generating force is clearly described by

the difference between two elementary forces, i.e. a radial force that is
dependent on the application point and a force of constant direction and
intensity. We will see that these elementary constituents stem from so-called
‘meridian’ potential fields (see Appendix B) of axis

−→
TA. These fields are

expressed in Legendre polynomial series as a function of the cosine of angle
u. For a given celestial body, the difference between these two elementary
fields, which have the same axis of revolution, defines the tide-generating
potential.

2.1 • Elementary force potentials associated with celestial bodies

Oceanic tides occur on Earth so an associated reference frame is required.
This includes the Txyz orthonormal frame (figure 3.6) with the Earth’s centre
T as origin and the vertical plane of celestial body A at point M0(x0, y0, 0)

serving as the Txy plane. The axis of revolution of force field
−→
TA is selected

as the x-axis (unit vector −→u ), with point B here being the projection of M0
on this axis.

When a = aT/rA, coordinates of M0 and the matrix representation of the
constituents of vector

−−→
M0A can be formulated as:

M0

x0 = rAa cos u

y0 = rAa sin u

z0 = 0
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III. Tide-generating force and potential

BT

M0

∆

a T

rA

v
→

u
→

A

FA/T

→

F
A/M

→

θ

FA( M)
→

x0

y0

Figure 3.6: Orthonormal reference frame Txyz, where Txy is the TAM0 plane of the

vertical of celestial body A at point M0(x0, y0, 0), with Tx according to
−→
TA; the Tz axis

is not shown.

and

−−→
M0A⇒


(rA − x0)

(0− y0)

0

 =


rA(1− a cos u)

−rAa sin u

0

 (3.16)

In the Txyz reference frame, modulus D of
−−→
M0A can be expressed by:

D = rA

√
1− 2a cos u+ a

2 (3.17)

This expression (3.17) obviously applies for all points M(x, y, z) of the
Earth’s intersection with a sphere of radius D, i.e. the circumference of
radius y0 = aT sin u, centre B and where the

−→
TA axis is taken as the axis

of revolution.
Recall that the tide-generating force

−→
F A(M) associated with celestial

body A and affecting all points M(x, y, z) in the Earth’s environment is the
difference between two elementary constituents, i.e. the attractive force
−→
F A/M of celestial body A on M and the tractive force

−→
F A/T of the reference

frame associated with the Earth (force equal to the attraction of celestial
body A on T).

The analytical expression of both of these components is regular, i.e.
definite, non-null, bounded, continuous and derivable at least once. Their
spatial distribution gives rise to lines of force with a meridian structure in
relation to the axis of revolution

−→
TA, which in turn serves as the polar axis
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2. Tide-generating potential

for the two fields defined by these distributions. Moreover, force
−→
F A/T has

a constant modulus and direction and the second force
−→
F A/M has a radial

direction
−→
MA, and its modulus is a function of u. The rotational factor is thus

nil, which is a prerequisite for all of these elementary forces to be derived
from a potential. Hence there are two meridian fields with the same axis
of revolution

−→
TA. The difference between them defines the tide-generating

potential corresponding to the considered celestial body. This potential is
therefore also defined by a meridian field of the axis

−→
TA.

2.1.1 • Expression of the potential of
−→
F A/M – the attractive force exerted by

celestial body A on all points M of unit mass

This force defines the ‘sink field’ (gravitational forces) created by the
celestial body. All spheres centred on A are equipotential surfaces. We can
verify that the flux F of this radial force through each of these spheres is
constant (null divergence) by:

F = 4pD
2FA/M

with

FA/M = kmA/D
2
⇒ F = 4pkmA

where k is the universal gravitational constant and mA is the mass of the
celestial body. In a positive sense from M to A, the potential of all points
M is thus:

U(r)(M) = kmA/D (3.18)

where index (r) indicates that it is a field of radial lines of force (the celestial
body is on the right side of the equation as a subscript to the mass). Consid-
ering the D value given by equation (3.17), equation (3.18) can be expressed
in the neighbourhood of T as a function of the potential U(r)(T) and of a Leg-
endre polynomial series. Since condition |2a cos u−a

2
| < 1 is satisfied, the

expression deduced from (3.17) giving rA/D represents the Legendre poly-
nomial tide-generating function (see Appendix B), or:

rA/D = 1/
√

1− 2a cos u+ a
2 =

n→∞∑
n=0

a
nPn(cos u) (3.19)

When U(r)(T) designates UA(T), then:

UA(T) ≡ U(r)(T) = kmA/rA (3.20)
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III. Tide-generating force and potential

The meridian attractive potential U(r)(M) of celestial body A in M as a
function of the T potential and the geocentric zenithal distance u is thus
expressed as:

U(r)(M) = UA(T)

n→∞∑
n=0

a
nPn(cos u) (3.21)

2.1.2 • Expression of the potential of
−→
F A/T – the tractive force of the reference

frame associated with Earth (equal to the attraction of celestial body A at
the Earth’s centre T

This second elementary force is identical at all M points in the Earth’s
environment. It is always parallel to the axis of revolution

−→
TA and thus

defines a meridian field of parallel force lines. This field is represented by
(p), so U(p)(M). In the Txyz reference frame, the matrix representation of
these constituents is:

−→
F A/T ⇒


FA/T

0

0

 =


kmA/r2
A

0

0

 =


UAT/rA

0

0


A force flux in any tube with generatrices parallel to

−→
TA is constant.

The equipotential planes are thus perpendicular to the field axis. In the
neighbourhood of T, the potential U(p)(M) corresponding to all points M

on the plane perpendicular to
−→
TA in B(equipotential plane of M0) can be

expressed as:

U(p)(M) = UA(T)+ x0FA/T = UA(T)
(
1+ a cos u

)
(3.22)

with UA(T) given by (3.20) and x0 by (3.16). The product x0FA/T represents
the impact of force

−→
F A/T along every pathway between T and all points M

on the equipotential plane containing M0.
As the primary Legendre polynomials are P0(cos u) = 1 and P1(cos u) =

cos u, equation (3.22), which gives the meridian potential corresponding to
the tractive force

−→
F A/T, can also be expressed as:

U(p)(M) = UA(T)
[
1+ aP1(cos u)

]
(3.23)

2.2 • Tide potential field generated by a celestial body

The tide-generating force for a given celestial body is the difference
between forces

−→
F A/M and

−→
F A/T, so the tide potential U induced by celes-

tial body A at point M is thus determined by the difference between the two
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2. Tide-generating potential

elementary potentials U(r)(M) and U(p)(M), which are respectively given by
(3.21) and (3.23), or:

U = U(r)(M)− U(p)(M) = UA(T)

n→∞∑
n=2

a
nPn(cos u) (3.24a)

We symbolised this potential simply by U since the nature of celestial
body A and the coordinates of point M on the celestial body’s vertical are
expressed on the right side of the equation.

Considering expressions (3.6), (3.13), (3.14) and (3.20), which respec-
tively define k as a function of g, parallax iA, parameter xA and potential
UA(T), and where a = (aT/r0)(r0/rA) = a0iA ⇒ a0 = aT/r0, the tide-
generating potential U for a specific celestial body is finally expressed by:

U = aTgxA

n→∞∑
n=2

in+1
A a

n−2
0 Pn(cos u) (3.24b)

Although the parallaxes iA remain around unity, with a maximum of
1.067 for the Moon and 1.017 for the Sun, this is not the case for the a0
ratios, which have lower magnitudes of around 1,666 · 10−2 for the Moon
and 0,427 · 10−4 for the Sun, thus prompting a very rapid decline in the
series terms (3.24b). We will see in Chapter IV that only the first terms are
retained (three for the Moon, two for the Sun). However, expression (3.24b),
which is reduced to P2(cos u) in the first term, provides a very good first
approximation of the lunar tide-generating potential, or:

U ≈ aTgxA(iA)3P2(cos u) (3.24c)

where

P2(cos u) = (3 cos2
u− 1)/2 (3.25)

The observed tide-generating potential clearly consists of the sum of
potentials related to the two generating celestial bodies (Moon and Sun)–it is
often called the ‘lunisolar potential’. This global potential is not a meridian
potential, except at equinox when the celestial body declinations are nil and
the hour angles identical. At this time, the two field axes merge and the
impact of the two celestial bodies on the tide is maximum.

When CA = 3xAgaT/4 is a constant value, equation (3.24c) becomes:

U ≈ 2CAi3
A[cos2

u− (1/3)] (3.26)

This latter equation will enable us to resolve the potential into the three
species described by Laplace.
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III. Tide-generating force and potential

3 • Breakdown of the potential into Laplace species

Spherical coordinate systems are outlined in Appendix A. In particular,
a relation that gives the geocentric zenithal distance u as a function of the
equatorial coordinates of celestial body A (hour angle � and declination
d) and latitude L at point M is expressed by the cosine relation in the PAM
triangle (figure 3.7), or:

cos u = sin L sin d+ cos L cos d cos � (3.27)

Figure 3.7: Relative positions of celestial body A, zenith M and north pole P on the
local celestial sphere.

When cos u is replaced by its value given by (3.27), expression (3.26) of
the tide-generating potential U becomes:

U = CAi3
A

[
3

(
sin2 L−

1

3

)(
sin2

d−
1

3

)
+ sin 2L sin 2d cos �

+ cos2 L cos2
d cos 2�

]
(3.28)

This relation reveals the sum of three constituents of Ui potentials (i = 0, 1
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3. Breakdown of the potential into Laplace species

or 2), with each defining a very specific tide frequency domain, or:

U0 = 3CAi3
A

(
sin2 L−

1

3

)(
sin2

d−
1

3

)
(3.29)

U1 = CAi3
A sin 2L sin 2d cos � (3.30)

U2 = CAi3
A cos2 L cos2

d cos 2� (3.31)

The hour angle � coefficient value in each constituent of the Ui potential
enables a species classification according to frequency domains: 0 for long
periods (LP), 1 for diurnal species and 2 for semi-diurnal species.

The three Ui constituents have parameter i3
A in common, which in a first

approximation is equivalent to 1 + 3eA cos(sAt), where sA is the angular
velocity of celestial body A in its eccentric orbit eA (Appendix A). In all tidal
species, this parameter introduces modulations associated with the rotation
rate of each celestial body (annual for the Sun, monthly for the Moon). Other
factors are more informative.

Expression (3.29) for the U0 potential (long-period and low-frequency
species) does not include the hour angle (coefficient 0 for �) and depends
only on the other two parameters, i.e. declination d and latitude L:
• In factor sin2

d − 1/3, the declination is involved via its square sine;

as in sin2
d =

1− cos 2d

2
, temporal variations in this factor introduce a

constituent with a period equivalent to half of the celestial body’s rotational
time, i.e. around 14 days for the Moon and 6 months for the Sun. This factor
is always negative due to the extreme declination values reached by the Moon
(28°30′) and Sun (23°27′).
• The second factor (sin2 L − 1/3) is cancelled out at latitudes L such as

sin L = ±
1
√

3
, i.e. at parallels 35°16′N and 35°16′S. Nodal axes (points

where this long-period term is cancelled out) are thus two corresponding
parallels. This feature affects the so-called ‘zonal’ distribution (figure 3.8) of
the tidal long-period term.

As the first factor is always negative, the LP term of the potential is always
positive for latitudes between 35°16′N and 35°16′S, and negative elsewhere.

Note that during one revolution of the celestial body in its orbit, the mean
U0 term is not null and solely depends on the latitude.

In equation (3.30), the U1 of diurnal species contains the product
sin 2L sin 2d cos �, where � has a coefficient of 1. The nodal axes of this
term are the Equator (sin 2L = 0) and the meridian great circle orthogo-
nal to the celestial body’s meridian (cos � = 0). This term has a so-called
‘tesseral’ distribution (mosaic pattern: figure 3.9) and its sign changes with
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III. Tide-generating force and potential

that of the declination d. The periodicity of the hour angle � is approxi-
mately 24 h for the Sun and 24 h 50 min for the Moon. However, the declina-
tion d, like the parallax cube i3

A, has a slow variation pattern (annual for the
Sun, monthly for the Moon) as compared to that of the hour angle �. The
2d variation modulates (14 days for the Moon, 6 months for the Sun) the
amplitude of this species–it is called ‘diurnal’ in reference to its dominant
period (as dictated by the dominant period of the �).

The modulus of the diurnal term is maximum when the celestial body
crosses the meridian plane above or below the site–at this time | cos �| = 1.
Maximum maximorum values are reached at latitudes 45°N and 45°S
(| sin 2L| = 1) when the declination d has a maximum absolute value (23°27′

for the Sun and 28°30′ for the Moon). This term is nil for points on the equa-
tor and at the poles (sin 2L = 0) or when the celestial body’s declination is
nil (sin 2d = 0).

Finally, for U2, i.e. a constituent of the potential of semi-diurnal species,
the hour angle � has a coefficient of 2 in the cos2 L cos2

d cos 2� term. As
nodal axes, it accepts meridian circles located 45° on each side of the celestial
body’s meridian–cos 2� is nil for these axes.

These nodal axes divide the Earth into four sectors with a so-called ‘sec-
torial’ distribution (figure 3.10) over the globe (4 90° sectors). This term
is positive in the two opposite sectors, with the median being the celestial
body’s meridian, and negative in the two other sectors. It also allows two

Figure 3.8: Zonal distribution of the long-period and low-frequency terms: U0 ∝

(sin2 L− 1/3)(sin2
d− 1/3).
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3. Breakdown of the potential into Laplace species

Figure 3.9: Tesseral distribution of the diurnal term: U1 ∝ sin 2L sin 2d cos �.

maxima and two minima per day because of the cos 2� periodicity. Maxi-
mum maximorum values are reached by points on the Equator (cos2 L = 1)
when crossed by the celestial body (cos2

d = 1). This term is nil at the poles.

Figure 3.10: Sectorial distribution of the semi-diurnal term:
U2 ∝ cos2 L cos2

d cos 2�.
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III. Tide-generating force and potential

The next chapter describes how Laplace developed his method for predict-
ing high and low water heights whereby the potential is considered according
to three separate species.

86



IV

Laplace’s dynamic theory

of tides

Laplace was the first to consider tides as a hydrodynamic issue. His equa-
tions are hard to integrate, except in special cases, but they have not been
challenged. Moreover, they provided a basis for subsequent developments
after the advent of computers. Through a semiempirical analysis based on
observations, Laplace used the structure of these equations to develop a for-
mula and a prediction method that bear his name. The predictions were
first used to calculate high and low waters. This method, with minor mod-
ifications, continued to be used in France until the late 20th century. It is
still used to calculate the tidal coefficient, which is a very popular tide table
feature in the Atlantic coastal region of France. A general definition of this
coefficient is provided in the next chapter describing the harmonic analysis
of tides.

1 • Laplace’s equations

In 1776, Laplace formulated fundamental equations describing the
response of the oceans to the tide-generating forces. We will outline the
hypothesis with the same notations that have been used to date. In the
absence of a tide-generating potential, the Earth is spherical and of radius aT.
It rotates uniformly around the polar axis (rotation vector−→vT), which is cov-
ered with an incompressible ocean of constant density r, and of depth H
which is a function of position M with its geographical coordinates (G, L). In
the presence of the lunisolar tide-generating potential U, the sphere becomes
a spheroid covered by fluid. Laplace accounted for the modification in the
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IV. Laplace’s dynamic theory of tides

potential by the presence of this fluid covering. To simplify the presentation,
this factor will not be taken into account (the corresponding correction is
of the order of 10%). The major hypothesis put forward by Laplace is that
the response of the ocean to the excitation of the tide-generating force is
linear, so nonlinear terms are ignored in the hydrodynamic equations. The
horizontal constituent of the tide-generating force induces an ocean current
whose horizontal velocity−→u is identical at all ocean depths H. As the values
of −→u and H vary with the position M, the continuity of the fluid volume
implies variations in the elevation z of the ocean surface, which in turn
generate a tide wave. Note that this elevation z is defined as an upward local
vertical value (unit vector

−→
z M) measured from the initial sphere. Laplace

formulated the following equations to illustrate his theory:
• the first is the continuity equation applied to an incompressible fluid

assuming zero velocity divergence; in this case, the equation is as follows:
−→
∇h · (H−→u )+ ∂z/∂t = 0 (4.1)

where
−→
∇h · (H−→u ) is the scalar product (symbol ·) of the vectorial horizontal

gradient operator
−→
∇h of constituents (∂/∂x, ∂/∂y) in a Cartesian system, and

of vector H−→u representing transport of the entire water column;
• the second is the horizontal fluid movement equation, or:

∂
−→u

∂t
+ 2−→vT ∧

−→u =
1

r

−→
∇h(U− gz). (4.2a)

Laplace in 1776 was the first to take into account the effect of the Earth’s
rotation −→vT on marine currents, while the discovery of the inferred accel-
eration 2−→vT ∧

−→u is usually attributed to the mathematician Coriolis, who
had rediscovered it almost half a century later, in 1835! Oceanographers and
meteorologists thus refer to the projection of the vector 2−→vT on the upward
local vertical as the ‘Coriolis parameter’ (symbolised by f ), or:

f = 2−→vT ·
−→
zM = 2vT sin L

which has the same sign as the latitude (positive north, negative south).
Equation (4.2a) can also be formulated with the vertical vector f

−→
z M :

∂
−→u

∂t
+ f
−→
z M ∧

−→u =
1

r

−→
∇h(U− gz) (4.2b)

Equations (4.1) and (4.2b), which are expressed in spherical coordinates,
are the fundamental tidal equations formulated by Laplace. The tide equilib-
rium is obtained when the U − gz term is considered to be constant. The
horizontal gradient is zero and the solution for (4.2b) – but which without
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2. Laplace’s formula

internal wave propagation in the ocean does not verify equation (4.1) – is the
inertial current, which is also called inertial oscillation.

2 • Laplace’s formula

The linearity of the response of the ocean to the applied force is shown
by low amplitude movements (nonlinear terms disregarded and small move-
ments superimposed). Laplace studied these equations and introduced a
friction term that is proportional to the velocity in (4.2a) and thus shows
that, because of their dissipation, the initial conditions do not have a crucial
role. He concluded that the only realistic solutions are those with oscillatory
characteristics (forced oscillations). Laplace presented his hypotheses as fol-
lows:
• Superimposition of minor movements (response linearity): “The total

motion of a system under the influence of very small forces is the result of the
combination of all partial movements generated separately by these forces.”
• Forced oscillation (dissipation of initial conditions and response period-

icity): “The state of a system of physical bodies in which the primary motion
conditions have vanished as a result of passive resistance phenomena is peri-
odic like the forces exciting it.”

This being an extremely simple series of equations, they are not applica-
ble in general cases. Laplace, however, demonstrated that the potential U
could be resolved into the sum of three terms (corresponding to the three
tidal species defined in Chapter III), and then – through a semiempirical
approach – used the result to formulate an equation to describe the tide at
specific locations. This method is so reliable and accurate that it was used,
with a few minor modifications, by the French Hydrographic Service until
1992. In line with the semiempirical approach implemented by Laplace,
hereafter we present the formulation obtained using mathematical signal
processing tools (transfer function, admittance, convolution, factoring into
harmonic and/or Fourier series, Dirac distribution, etc.). We first briefly
review the response of linear systems to external excitation and then explain
Laplace’s formulation for the three tidal species relative to a given celestial
body. The sum of the expressions obtained with the two tide-generating
celestial bodies gives Laplace’s formula for a lunisolar tide at a given point.

2.1 • Heights of three tidal species: Laplace’s formula

For simplicity, the sidereal time (see Appendix A) was selected as the
reference time. Fluctuations DvT in the Earth’s rotation are small enough
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IV. Laplace’s dynamic theory of tides

(max |DvT/vT| ≈ 10−7) for this time to be considered constant for tidal
calculations. It is useful to symbolise it as tg in order to distinguish it
from the mean time, but here we will simply refer to it as t. It is the hour
angle �g(G, t) of the vernal equinox, or point g, relative to a benchmark
meridian, i.e. the Greenwich meridian (longitude G = 0): �g(0, t) = vTt.

Where aA is the right ascension of the celestial body and dA is its declina-
tion (see Appendix A), at the position M(G, L) celestial body A(aA, dA) has
an hour angle of �A(G, t), symbolised hereafter by �A(t), and satisfies
equation:

�A(G, t) ≡�A(t) = (vTt + G)− aA (4.3)

(n.b. longitude G is positive east of Greenwich and negative west of this
meridian, and all angles are expressed in radians here). In addition, equation
(3.28) for the tide-generating potential UA, corresponding to celestial body
A, is expressed according to three constituents relative to Laplace’s tidal
species:

UA = UA,0 + UA,1 + UA,2 =

k=2∑
k=0

UA,k

where index k in the summation represents the coefficient of the hour angle
�A(t) in the expression of potential UA,k. Moreover, the terms for a
celestial body and a given location are constant in (3.28). Coefficient CA
depends only on the celestial body (n.b. r0 = rA, where the ‘overline’ symbol
indicates the mean value), and is formulated as follows:

CA =
3

4
gaTxA avec xA =

mA

mT

(
aT

r0

)3

.

Let BA,k(M) represent the terms relative to each species, which also
depend on the latitude L for point M, or:

BA,0(M) = 3CA
(1− 3 sin2 L)

3
(4.4a)

BA,1(M) = CA sin(2L) (4.4b)

BA,2(M) = CA cos2 L (4.4c)

Index A is omitted below since we are dealing only with the effects of
a single celestial body, but this factor will be included later when needed
to understand the text. This also applies with respect to point M in the
expression of Bk terms. Times t are however included for time-dependent
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2. Laplace’s formula

parameters. The three potentials can thus be expressed by:

U0(t) = B0i3(t)
[1− 3 sin2

d(t)]

3
(4.5a)

U1(t) = B1i3(t) sin 2d(t) cos �(t) (4.5b)

U2(t) = B2i3(t) cos2
d(t) cos 2�(t) (4.5c)

Parallax i(t) and trigonometric functions containing coordinates of the
celestial body (a, d) are periodic terms linked mainly to the tropical period
of the celestial body (365.242 days for the Sun and 27.321 days for the Moon).
Taking into account equation (4.3), U1(t) and U2(t) become:

U1(t) = B1i3(t) sin 2d(t)[cos a(t) cos(vTt + G)+ sin a(t) sin(vTt + G)]

U2(t) = B2i3(t) cos2
d(t)

[
cos 2a(t) cos 2(vTt + G)

+ sin 2a(t) sin 2(vTt + G)
]
.

Factors cos(vTt+G) and sin(vTt+G) are periodic with period 2p/VA, so
they can be expanded in Fourier series. Hence, the potentials of each tidal
species k, including U0(t) which is expressed by (4.5a), can be expanded in
an harmonic series of the type:

Uk(t) =
n=+N∑
n=−N

pkn cos(nknt − akn) (4.6)

where discrete frequencies generating multiple-line spectra are expressed by
the relation:

nkn = kvT + nVA (4.7)

with VA representing the mean angular velocity of the celestial body in
its orbit, as expressed here in radians per sidereal time unit. It should
be noted that the symbol k always represents the hour angle coefficient in
expressions of the corresponding potentials (n.b. LP, k = 0; diurnal, k = 1;
semidiurnal, k = 2). Moreover, the Earth rotation velocity vT ≈ 1 cpd
(cycles/day) is very high relative to VA (VL ≈ 1/28 cpd for the Moon L
and VS ≈ 1/365 cpd for the Sun S). Summations in n are thus performed
in an interval (−N,+N) where N is an integer of generally a few units. Bi
terms associated with the celestial body characteristics and the latitude of
the site (but not time dependent) are included in the value of amplitude pkn.
Note also that the frequency deviations in each set of species are low and
that the amplitudes pkn quickly drop to very low or negligeable values as
the absolute n values increase. By adding the imaginary sine constituent to
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IV. Laplace’s dynamic theory of tides

each associated cosine constituent, and based on the same amplitude and
argument, the Uk(t) potentials become real parts of complex series:

Ck(t) =
n=N∑

n=−N

pknej(nknt−akn) (4.8)

The corresponding water heights hk(t) are represented by the real parts of
series:

hk(t) =
n=N∑

n=−N

hkne−jfkn ej(nknt−akn) (4.9a)

and

hk(t) =
n=N∑

n=−N

aknpknej(nknt−akn) (4.9b)

where the akn terms represent complex admittances of each frequency nkn :

akn = wkne−jakn (4.10)

Laplace defined admittances on a semiempirical basis according to obser-
vations (thus dependent on the site), and also based on the fact that the
frequencies of each species are concentrated in a relatively limited domain.
Laplace’s initial hypotheses were thus as follows. First, the amplitude factors
wkn maintain a constant value bk for each species k, irrespective of the fre-
quency but not of the celestial body, or:

wkn ≡ bk

for all n. This amplitude factor will be symbolised by bA,k hereafter to reflect
its relationship with celestial body A. Phase differences wkn are a function of
the frequencies within the species, and an increasing linear function of the
frequency in the domain corresponding to each species, or:

dwkn/dnkn = Tk

The three Tk parameters are time lapses that induce frequency-dependent
phase lags. These are the ‘ages’ of the corresponding tidal species. By
integration, we obtain:

wkn = nknTk + klk

where klk is a constant frequency independent phase difference for the con-
sidered species. Laplace also considered that the two coupled parameters
(Tk, klk) were identical for the two tide-generating celestial bodies. The
index corresponding to the celestial body is thus not presented in the nota-
tion for these parameters. For the long-period (LP) tidal species group,
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2. Laplace’s formula

because of the slow movement induced in the oceans, Laplace hypothesised
a static phase response, i.e. zero values of T0 and l0. In brief, Laplace’s admit-
tances have constant amplitude factors bA,k for a celestial body and a given
tidal species group. However, phase differences wkn are not dependent on
celestial bodies and are characterised, for each species, by an age Tk, thus
introducing a lag associated with the frequency nkn, and by a constant phase
difference ilk. If D(t) represents the Dirac distribution, the translation of
these hypotheses gives, for each species, the complex transfer function (with
index A added for the celestial body):

FA,k(t) = bA,ke−jklk D(t − Tk) (4.11)

with zero T0 and l0 for LP species (k = 0). Each transfer function thus
pools all of the elements included in Laplace’s hypotheses, i.e. gain, phase
differences and age of the tidal species. Note that the convolution of D(t−T)

with a function U(t) induces a translation in the time of−T:

D(t − T) ∗ U(t) =
∫
+∞

−∞

D(t− T) ∗ U(t − t)dt = U(t − T)

The response of the oceans to the complex potential given by (4.8) for a given
celestial body, is thus expressed by:

hA,k(t) = FA,k(t) ∗CA,k(t) (4.12)

For a specific celestial body A and a given time t, the sum of real parts of
each species (index and factor k), the corresponding water height hA,k(M, t)
is expressed as:

hA,k(M, t) = bA,k(M)
∑

n
uA,k,n cos

[
(kvT + nVA)(t − Tk)

− wA,k,n − klk
]

(4.13)

where the amplitude factor, as a function of position M, is represented
by bA,k(M). Moreover, because of the equivalence of the harmonic series
expression (4.6) of potentials Ui(t) and their original relations (4.5a, 4.5b
and 4.5c), equation (4.13) applies for each set of species (k = 0, k = 1 and
k = 2) through the following expressions in which indices t − Tk attributed
to astronomic elements iA, ∂A and �A indicate that they are taken at times
t − Tk.

hA,0(M, t) = HA,0(M)
[
iA(t−T0)

]3 [1− 3 sin2
dA(t−T0)

]
(4.14a)
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with T0 = 0

hA,1(M, t) = HA,1(M)
[
iA(t−T1)

]3 sin
[
2dA(t−T1)

]
× cos

[
�A(t−T1) − l1

]
(4.14b)

hA,2(M, t) = HA,2(M)
[
iA(t−T2)

]3 cos2
dA(t−T2)

× cos
(
2
[
�A(t−T2) − l2

])
(4.14c)

In the last three equations, the water heights HA,k(M) have constant values
at the monitoring site for a given species and celestial body, as expressed by
the following relation:

HA,k(M) = bA,k(M)× BA,k(M)

with coefficients BA,k(M) defined by (4.4a), (4.4b) and (4.4c). If L represents
the Moon and S the Sun, the Laplace formula for a lunisolar tide at point M is
thus obtained by the sum of the three tidal species generated by each celestial
body, or:

h(M, t) =
k=2∑
k=0

[
hL,k(M, t)+ hS,k(M, t)

]
(4.15)

For guidance, the range variation of the celestial body parameters (paral-
lax iA and declination dA) are:
• for the Moon:

0.94 ≤ iL ≤ 1.06 ⇒ 0.83 ≤ i3
L ≤ 1.19

−28°.57 ≤ dL ≤ 28°.57 ⇒ −0.84 ≤ sin 2dL ≤ 0.84

⇒ 0.77 ≤ cos2
dL ≤ 1

• for the Sun:

0.983 ≤ iS ≤ 1.016 ⇒ 0.95 ≤ i3
S ≤ 1.05

−23°.44 ≤ dS ≤ 23°.44 ⇒ −0.73 ≤ sin 2dS ≤ 0.73

⇒ 0.84 ≤ cos2
dS ≤ 1

The earliest tidal observations at Brest were limited to high and low water
levels and times. Laplace used these readings to calculate all amplitude
factors bA,i(M), which were then used to predict daily extremes and their
corresponding times.

3 • High water times; tidal coefficient

Laplace formula calculations concern only high and low water determini-
nations. These times and levels were chiefly calculated by iterative processes
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tailored to the calculation resources available at the time, prior to the advent
of calculators and computers. In this part, we will also limit our discussion to
the calculation of high water times and Laplace’s tidal coefficient definition.

3.1 • Calculation of high water times

When calculating high and low water times, in his first approximation,
Laplace overlooked the influence of long-period and diurnal tidal species.
He only took semidiurnal lunisolar constituents into account; in an addi-
tional approximation solar constituents were considered as a disturbance to
the corresponding lunar species. With these Laplace’s approximations, equa-
tion (4.15) becomes:

h(M, t) ≈ hL,2(M, t)+ hS,2(M, t) = h2(M, t) (4.16)

where h2(M, t) is the semidiurnal lunisolar constituent. To simplify the
formulations, it should be understood hereafter that the water heights are
a function of site M. Hence, when:

AA,2 = HA,2 × iA3
(t−T2)
× cos2

dA(t−T2)
(4.17)

where index A = L or S, the height h2(t) can be expressed as:

h2(t) = AL,2 cos
(

2[�L(t−T2)
− l2]

)
+ AS,2 cos

(
2[�S(t−T2)

− l2]
)

(4.18)

For extreme high or low waters, and neglecting variations in AA,2, we get:

dh2(t)/dt = 0

Variations in amplitudes AS,2 and AL,2 around their means have their
respective periods of 1 year (tropical year: 365.242 2 d) and about 1 month
(tropical revolution of the Moon: 27.321 58 d); thus they vary slowly relative
to the cosines of the hour angle, which have periods of around 24 h. Laplace
ignored variations of these amplitudes, but he gave them temporal values cal-
culated to be close to (thw−T2), where thw is the high water time(index hw).
With these approximations, relation (4.17) is condensed into the following
equation:

AL,2 (sin[2(�L − l2)])× (d�L/dt)

+ AS,2 (sin[2(�S − l2)])× (d�S/dt) = 0 (4.19)
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where the hour angles and their derivatives are taken at time (t − T2).
When considering equation (4.10), the variation in �L relative to that of
�S gives parameter R(t):

R(t) =
d�L/dt

d�S/dt
=

vT − (daL/dt)

vT − (daS/dt)
(4.20)

This time-dependent ratio R(t) fluctuates slightly around a mean R, which
can be estimated by taking into account the mean angular velocity of celestial
body A in its orbit (VA = daA/dt), or

R =
vT −VL

vT −VS

R ≈

[
1−

( 1
27.32

)][
1−

( 1
365.24

)] ≈ 0.966.
(4.21a)

Laplace adopted the approximate value:

R ≈
29

30
= 0.966 666 . . . (4.21b)

This parameter has since been determined with more accuracy:

R =
24

24.841 202 4
= 0.966 136 808 (4.21c)

and is known as the ratio of durations of the solar day to the lunar day.
The Laplace approximation turned out to be sufficient for calculating the

time of high water.
When considering the solar constituent as a disturbance to the lunar

constituent, and where Ã(t) represents the deviation between the lunar and
solar vertical ascensions (or hour angles), we obtain:

Ã(t) = aL(t)− aS(t)⇒�S(t) =�L(t)+Ã(t) (4.22)

From this equation (4.22), we can deduce:

sin (2[�S(t)− l2]) = sin (2[�L(t)− l2]) cos[2Ã(t)]

+ cos (2[�L(t)− l2]) sin[2Ã(t)]

Taking this last relation into account and assuming:

p =�L(t − T2)− l2 (4.23)

equation (4.19) enables us to formulate, with the Laplace approximation for
R, the following expression:

tan(2p) =
− sin[2Ã(t − T2)]

(29/30)(AL,2/AS,2)+ cos[2Ã(t − T2)]
(4.24)
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An iterative process starts from an initial approximate value for parameter
p. Knowing an exact time of an extreme water level, e.g. high water (index
hw), the following one will take place approximately 12 h 25 min later.
This initial information is used to determine the corresponding phw value
through equation (4.24). The fact that the deviation in right ascensions of
the two celestial bodies Ã(t) slowly varies is accounted for by:

Ã(t − T2) ≈ Ã(t)− T2
dÃ(t)

dt
≈ Ã(t)− m2 (4.25)

with the angle m2 = T2dÃ(t)/dt = (VL −VS)T2 being constant.
The time t0 of the passage of the Moon across the meridian of the site is

then taken as the time of origin as follows:

t0 = 0⇒�L(t0) =�L(0) = 0

By a limited expansion of �L(t) based on this origin, we can state as a
first approximation:

�L(t) ≈�L(0)+ t(d�L/dt)

or

�L(t) ≈ [vT − (daL/dt)]t ≈ (vT −VL)t

The Moon’s hour angle at time (t − T2) is thus expressed by:

�L(t − T2) ≈ (t − T2)× (vT −VL)

Then equation (4.23) becomes:

l2 + phw ≈ (t − T2)× (vT −VL)

Considering expression (4.21b) for parameter R (value used by Laplace),
the high water time thw is thus obtained by equation:

thw ≈ T2 +
30

29
×

l2 + phw

vT −VS
(4.26a)

Note that the term (vT −VS) represents the mean angular velocity of the
Sun in relation to a reference meridian, or 360°/24 h⇒ 15°/h, and that the
Earth is divided into 24 time zones of 15° angles (15°⇒ 1 h). As the angles
l2 and ppm are usually expressed in hours, the previous elements enable us
to formulate an equation that gives the high water time thw from the Moon’s
passage across the meridian of the site, by the relation:

thw ≈ T2 +
30

29
(l2 + phw) (4.26b)
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with l2 and phw expressed in hours. To assess the amplitude of the tidal
range throughout the year, the elements described above can also be used to
calculate the tidal coefficient.

3.2 • Tidal coefficient

The ‘tidal coefficient’ notion was first introduced by Laplace and included
in French coastal tide tables in the late 19th century. To compare tidal
ranges, Laplace allocated a height unit U to each harbour, which he defined
as follows: “the height unit is the mean amplitude (half-range of tide) of
the highest water height around 1.5 days after the time of the full or new
Moon, around equinoctial syzygy.” The tidal coefficient C is an amplitude
ratio directly derived from this definition. By convention, coefficient 100
is attributed to the mean half-range of the spring tide following the syzygy
closest to equinox. We thus have the formula:

C = 100
hhw − Nmm

U
where hhw is the high water height and Nmm is the half-tide height; hhw −

Nmm represent the half-range of tide. In practice, this coefficient is only
calculated for Brest harbour, as it is based solely on the semidiurnal tidal
constituents. U is evaluated assuming that, at time t§ of a mean equinoctial
syzygy, the following elements are available:
• for hour angles:

�S(t§)± 12 h

• for declinations:

dL(t§) = dS(t§) = 0°

• for mean parallaxes:

iL(t§) = 120/119⇒ i3
L(t§) ≈ 41/40 = 1.025

iS(t§) = 1

For each celestial body, equation (4.14c) gives us the maximum spring tide
(high water) T2 hours after syzygy, or:

hA,2(t§ + T2) ≈ HA,2i3
A(t§)

A good approximation of height unit U is thus obtained with the following
equation:

U ≈ U2 ≈ (41/40)HL,2 +HS,2 (4.27)

U ≈ (1.025+m)HL,2
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where

m(M) =
HS,2(M)

HL,2(M)
< 1 (4.28)

The tide is reduced to its semidiurnal constituent to calculate a high
water height hhw for a given day. It can be evaluated by considering the
complex expression h2 of the height given by equation (4.18), which may
be formulated by introducing deviation Ã of the right ascensions (or hour
angles):

h2 = H
(

AL,2 + AL,2e2jÃ
)

e2j(�L−l2)

where �L and Ã are obtained for the time (t−T2). The complex amplitude
X2 of a semidiurnal tide is the first factor on the right side of the equation,
expressed as:

X2 = AL,2 + AS,2e2jÃ
= P2e−2ju

Module P2 of the complex amplitude X2 is time dependent and equal to:

P2(t − T2) =

√
A2

L,2 + A2
2 + 2AL,2AS,2 cos 2Ã (4.29)

Phase u at time (t−T2) is readily deduced through the tangential equation:

tan 2u =
− sin 2Ã

(AL,2/AS,2)+ cos 2Ã

This u value is very close to parameter p defined in 4.24, where the
(AL,2/AS,2) factor is the coefficient R = 29/30. The two values would
be identical if the hour angle deviation were neglected over a timespan
equivalent to the tidal age T2. This can be accounted for since, in a first
approximation, the initial equation (4.21a) can be formulated as:

R ≈ 1+
1

vT

dÃ

dt
where vT ≈ 1 cpd. However, the high water time is thw, and determined
from phw. Hence, by incorporating module P2 considered at time (thw−T2)

at the half-range of tide, the tidal coefficient may be expressed on the basis
of equations (4.27) and (4.29) by:

C ≈ 100 P2/U. (4.30)

Equations (4.18), (4.27), (4.28) and (4.29), respectively define amplitudes
AL,2 and AS,2, height unit U, ratio m(M) and module P2 so tidal coefficient
C may now be formulated as follows:

C

100
=

√
(i3

L cos2
dL)2 +m2(i3

S cos2
dS)2 + 2m(i3

L cos2
dL)(i3

S cos2
dS) cos 2Ã

1.025+m
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IV. Laplace’s dynamic theory of tides

In this latter equation, all astronomic elements, i.e. (iA, dA and Ã), are
considered at time thw − T2. As defined here, coefficient C depends only on
ratio m and age T2 of a semidurnal tide. If we assume that parameter m is
constant (which seems rational since it is a ratio of two contributions of close
periods), the tidal coefficient would be completely identical at all points M,
except for an offset due to the age of tide. However, this is not exactly the
case, even though the spatial variation in m is small enough that the tidal
coefficient calculated for a given point can be assigned to all nearby points,
but with a time shift to account for the difference in ages T2. Tide predictions
currently provided in tide tables published for French ports are no longer
based on the Laplace formula, but the tidal coefficient concept has remained
so popular that the coefficient is still being used.

4 • Conclusion

In summary, the Laplace formula was found to be very satisfactory for
predicting high and low waters in areas where diurnal tidal species are low
to negligible as compared to semidiurnal species. This is the case at Brest and
in most other European coastal regions. When there is a substantial diurnal
constituent, Laplace’s method is not accurate enough for predicting extreme
water levels associated with tidal phenomena. Moreover, in shallow waters
(particularly in estuaries), the nonlinear terms of hydrodynamic equations
cannot be ignored and Laplace’s hypotheses no longer apply. Nonlinear
effects give rise to water level variations at composite frequencies, especially
at the harmonics of the semidiurnal species. The Laplace formula cannot
be universally applied and has thus been superseded by a method based on
the harmonic analysis of tide. A harmonic method for calculating the tidal
coefficient will be proposed.
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V

Harmonic

tidal equation

1 • Introduction

The harmonic tidal equation stems directly from the two fundamental
principles of Laplace’s dynamic theory of tides: the forced oscillation prin-
ciple and the principle of superposition. It is based on development of the
tide-generating potential function and the sum of strictly periodic terms
and discrete clearly delineated frequencies representative of the sum of Dirac
distributions. This frequency distribution involves a so-called multiple-line
spectrum as opposed to a continuous spectrum (a continuous function of
the frequency). Laplace had already thought of expressing the potentials
of each celestial body by sine functions with arguments that varied linearly
with time. Each term of the expansion could be interpreted as the potential
of a hypothetical celestial body with a uniform circular motion on the equa-
torial plane, which generates a tidal wave of the same period, but with an
amplitude and phase that are functions of the site considered and the angu-
lar velocity of this hypothetical body at the celestial equator. Based on the
hypothesis of a linear response of the ocean at the celestial body’s orbital
period for diurnal as well as semidiurnal constituents, i.e. in sufficiently nar-
row frequency domains, Laplace was able to overcome the need for a com-
plete harmonic development. He could thus express the sum of constituent
tidal waves in the form of a finite development with just a few terms. He also
showed how to achieve a completely harmonic development of the poten-
tial while also taking the main lunar orbit perturbations into account. He
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V. Harmonic tidal equation

deduced the expression corresponding to each wave irrespective of all ampli-
tude and phase hypotheses. Kelvin (in 1867) and then Darwin (in 1883)
further pursued this work of Laplace and called it harmonic development of
the tidal potential.

However, the lunar theory that was popular at the time did not enable
Darwin to come up with a complete development of the tide-generating
potential. Correction factors (called nodal factors) had to be introduced to
overcome irregularities induced by lunar nodes, which were considered as
disturbances.

Doodson’s tidal potential development of 1921, which is more appropri-
ate for automatic calculation methods, remained a reference for over half
a century, despite the fact that it was calculated on the basis of astronomic
constants of 1900. It does not markedly differ from the computer-assisted
developments proposed by many authors in the 1970s based on new astro-
nomic constants.

2 • Darwin’s development of the tide-generating potential

As the lunar orbit is substantially altered by the effect of the Sun, the
development of the tide-generating potential proposed by Darwin in 1883
is not fully harmonic and may be presented as follows:

U(t) =
∑

i

fi(t)Ai cos[Vi,0 + qit + ui(t)] (5.1)

where:

t: civil time at the site

i: number of the considered constituent

Ai and qi: constant amplitude and angular velocity of constituent i

Vi,0: argument at time zero (t = 0)

fi(t) and ui(t): nodal factors of constituent i.

Nodal factors are time functions (amplitude fi(t) and phase lag ui(t) fac-
tors) that must be taken into account to correct slow variations in constituent
i. These variations are induced by the inclination of the lunar orbit at the
Equator (see Appendix A: ‘The Moon and its typical movements’). This incli-
nation, which ranges from 28°.8 to 18°.1, may be expressed as a function
of the ecliptic longitude of the ascending node (18.6 year period). These
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2. Darwin’s development of the tide-generating potential

terms are thus called nodal factors. Note also that the amplitude of a tide-
generating potential constituent is also called ‘coefficient’ because it is usu-
ally a relative value of the amplitude, which is useful information.

Although this development is not completely harmonic, it actually turned
out to be perfectly tailored for calculation methods available before the
advent of computers. Darwin calculated the Ai constant coefficients with
a very simplified lunar orbit equation. This avoided the problem of having
to calculate a much higher number of trigonometric functions that would
be required for a complete development. The corrections introduced by
these nodal factors were minor and varied slowly. They were also available
as tables that were compatible with the calculation methods of the time. It
may be considered that most nodal factors are constant throughout the year,
while also being relatively accurate. As these systematic corrections were
quite easy to implement, with constant values for each constituent i over
such a timespan, this method was widely used for routine applications. This
approach probably helped spread the idea that the year should be the base-
line period considered when performing harmonic analysis for tidal records.
Despite advances in calculation methods, Darwin’s development of the tide-
generating potential was long considered to be the gold standard, even after
publication of Doodson’s more complete development in 1921. Calculation
methods are no longer a stumbling block to using Doodson’s tide-generating
potential development. Darwin’s work has still had a marked impact on mod-
ern day tide monitoring. The main tide-generating potential constituents,
which are common to both developments, are now widely designated under
the names attributed by Darwin. Moreover, nodal factors are still very use-
ful, especially for predictions because they enable the user to limit the size
of harmonic constituent files without subtantial loss of accuracy. The list
of constituents proposed by Darwin is still usually enough to obtain a high
quality prediction for navigation needs. The names of the main constituents
outlined by Darwin are given in the following tables (5.1a and 5.1b). How-
ever, the coefficients are those used in Doodson’s development, which differ
very little from those calculated by Darwin. In practice, only their relative
importance has to be considered. Note that the magnitudes of the coeffi-
cients highlight a clear hierarchy in these constituents.

A few comments should now be made on certain specific constituents.
First, the potential constant terms obviously do not apply to the tide itself.
LP constituents (low frequency or long period) of astronomical tides are gen-
erally very low since they pertain to static theory and are often masked by
meteorological interference (action of the wind and atmospheric pressure
on the tide level). They are hard to detect on tidal records. Only the Sa
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V. Harmonic tidal equation

Table 5.1a: Lunar potential constituents

Symbol Constituent name Angular velocity Period Coefficient

degrees/hour days or hours u× 105

Constant term 00.000 000 00 50 458

Long periods Days

Mm monthly 00.544 374 68 27.554 551 21 8 253

Msf variational 01.015 895 76 14.765 294 42 1 367

Mf bimonthly 01.098 033 04 13.660 791 11 15 640

Diurnal Hours

2Q1 2nd order elliptic 12.854 286 23 28.006 222 48 952

Q1 major elliptic 13.398 660 92 26.868 356 63 7 206

r1 evectional 13.471 514 52 26.723 053 25 1 368

O1 principle lunar 13.943 035 60 25.819 341 66 37 689

M1 minor elliptic 14.496 693 96 24.833 248 26 2 961

K1 declinational 15.041 068 64 23.934 469 59 36 232

J1 secondary elliptic 15.585 443 32 23.098 476 73 2 959

OO1 2nd order lunar 16.139 101 68 22.306 074 22 1 615

Semidiurnal Hours

2N2 2nd order elliptic 27.895 354 87 12.905 374 45 2 300

m2 variational 27.968 208 48 12.871 757 60 2 777

N2 major elliptic 28.439 729 56 12.658 348 21 17 391

NU2 major evectional 28.512 583 16 12.626 004 38 3 302

M2 medium lunar 28.984 104 24 12.420 601 20 90 812

l2 minor evectional 29.455 625 32 12.221 774 13 669

L2 minor elliptic 29.528 478 92 12.191 620 20 2 567

K2 declinational 30.082 137 28 11.967 234 80 7 852

Third-diurnal Hours

M3 43.476 156 36 8.280 400 80 1 188

and Ssa constituents, which more reflect seasonal radiational tide variations
(associated with the thermal effects of solar radiation on the atmosphere and
ocean), can generally be highlighted. Tide-generating potential coefficients
relative to Sa and S1 waves are under 10−5. These two elements should not
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3. Doodson’s harmonic development

Table 5.1b: Solar potential constituents.

Symbol Constituent name Angular velocity Period Coefficient

degrees/hour days or hours u× 105

Constant term 00.000 000 00 23 411

Long periods Days

Sa annual 00.041 068 64 365.242 189 66 u < 10−5

Ssa semiannual 00.082 137 28 182.621 094 83 7 245

Diurnal Hours

P1 principle solar 14.958 931 36 24.065 890 22 16 817

S1 radiational 15.000 000 00 24.000 000 00 u < 10−5

K1 declinational 15.041 068 64 23.934 469 59 16 124

Semidiurnal Hours

T2 major elliptic 29.958 933 32 12.016 449 19 2 472

S2 medium solar 30.000 000 00 12.000 000 00 42 286

R2 minor elliptic 30.041 066 68 11.983 595 78 437

K2 declinational 30.082 137 28 11.967 234 80 3 643

be displayed in the table because other ones with higher coefficients are not
mentioned. They are, however, presented here so as to be able to account
for observed tide level variations at annual and diurnal radiational tide fre-
quencies, respectively. Generally, the respective actions of the two celestial
bodies may be better interpreted by documenting partial tides disturbed by
radiational constituents. Constituents K1 and K2, which are called sidereal
waves because their periods are equal to a sidereal day and a sidereal half-
day, respectively, are present in both the lunar and solar potentials. The coef-
ficients taken into account when studying them are the sum of coefficients
from both origins. K1, O1, P1 and Q1 are the main constituents for diurnal
tides, and M2, S2, K2 and N2 for semidiurnal tides. Alone they contain most
of the energy of the tidal signal and are sometimes the only factors taken into
account in baseline studies.

3 • Doodson’s harmonic development

Note that in 1921 Doodson proposed a harmonic development of the
tide-generating potential based on Brown’s recent (1905) lunar theory which
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V. Harmonic tidal equation

corresponded to a description of the Moon’s movement along ecliptic coordi-
nates (see Appendix A). In this lunar model, Brown provides elements con-
cerning the orbit (mean longitude and latitude) and the parallax according
to a series of trigonometric functions whose arguments are linear functions
of the mean time. In 1895, Newcomb provided the same elements for the
apparent Sun in the ecliptic. A very good tidal prediction over several cen-
turies may be obtained via these two orbit models. In Chapter III, it was
found that the meridian field of the generating potential U of a celestial body
A, of mass mA and at distance rA from the centre of the Earth (i.e. rA is the
mean distance), varies essentially with the cosine of the geocentric zenithal
distance u of the celestial body at point M at latitude L. We review expres-
sions of the cos u function in the different celestial reference frames (see
Appendix A), with the pairs (a, d) and (b, l) being urographic and ecliptic
coordinates of the celestial body, respectively:
• in equatorial systems (A1.1):

cos u = sin L sin d+ cos L cos d cos �

where the cos u function is a linear function of cos �;
• in the ecliptic system (A1.4):

cos u = sin L · f (b, l)+ cos L · g(b, l, �)

with

f (b, l) = cos e sin b+ sin e cos b sin l

and

g(b, l, �) = cos b cos l cos(a+�)

+ (cos e cos b sin l− sin e sin b) sin(a+�).

In this system, the cos u function is a linear function of cos � and sin �.
The equivalence of the relations (A1.01) and (A1.04) gives:

sin d = f (b, l)

cos d cos � = g(b, l, �)

The tide-generating potential of each celestial body can thus be expressed
in a harmonic series on the basis of its ecliptic coordinates and hour angle,
whose harmonic development was provided by Brown.

3.1 • Harmonic development by species

Taking expression (3.24b) of the Legendre polynomial series potential,
relative to the constant potential gaTxA for the considered celestial body A,
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3. Doodson’s harmonic development

we may write:

U

gaTxA
=

n→∞∑
n=2

in+1
A

(
aT

rA,0

)n−2

Pn(cosu) (5.2)

where the constant parameter xA depending on celestial body A (L: Moon;
S: Sun) is given by:

xA =
mA

mT

(
aT

rA,0

)3

with

xL/xS ≈ 2.2

and the parallax by iA = rA,0/rA, which is around unity.
As the maximum absolute Legendre polynomial values are equal to

unity, the magnitudes of the terms in the series are given by the values of
(aT/rA,0)

n−2 with n ≥ 2.
To calculate the tide-generating potential in harmonic series, Doodson

restricted his development to terms with a ratio to the greatest element of
over 10−5, while disregarding the other terms.

For the Moon, the ratio of the Earth’s radius to the mean distance of this
celestial body is around 1/60, which for n = 5 gives maximum values
of (aT/rL,0)

n−2
≈ 0.5 · 10−5 (index L for the Moon). For this celestial

body, Doodson thus considered its development with the first three terms
of the series, i.e. up to the term containing P4(cos u). Doodson studied the
contribution of this latter term and found that all constituents were below
the threshold he had set, except for a few that were very close. Since this
threshold was rather arbitrary, we only take the first two terms in the series
into account.

For the Sun, we have aT/rS,0 ≈ 4.26 · 10−5, so the corresponding
development of the potential therefore only includes the P2(cos u) term, with
the P3(cos u) term being around 2 · 10−9.

Moreover, by disregarding the P4(cos u) term and ranking Doodson’s
development of the lunar potential according to increasing powers m of cos u,
from equation (5.2) we obtain the following equation:

UL

gaTxL
=

m=3∑
m=0

uL,m cosm
uL (5.3)

In the ecliptic coordinate system, cos u is a linear function of the sine
and cosine of the hour angle � (see equations in Appendix A, and recalled
above). These trigonometric functions of � are thus implicitely involved
with the same powers m as cos u. The series (5.3) can thus be developed as a
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V. Harmonic tidal equation

sum of terms that each include a sine or cosine of an argument that is a linear
function of a multiple m of the hour angle �; for m = 0, the corresponding
terms are obviously independent of �. Pooling these terms according to the
m coefficient of the hour angle reveals a separation into frequency domains,
called ‘species’ as in Laplace’s equation:
• for m = 0, the hour angle is not involved; this species is the sum of long

period (LP) terms, where long periods depend only on the declination dL
and parallax (iL = rL,0/rL);
• for m = 1, the set of terms containing � is a diurnal species;
• for m = 2, we obtain the semidiurnal species with 2�
• for m = 3, the third-diurnal species with 3�.
Taking the P4(cos u) term of (5.2) into account would obviously reveal the

quarter-diurnal species with 4�.
This species arrangement is the framework of Doodson’s harmonic devel-

opment. When only considering the first two terms of (5.2) for the Moon,
the formulation is as follows:

UL = gaTxL

n=3∑
n=2

in+1
L (aT/rL,0)

n−2Pn(cosu) =

n=3∑
n=2

An (5.4)

The elementary potential An corresponds to the term of the UL devel-
opment containing the Pn(cos u) polynomial. By grouping the terms by m
species, the elementary potential can be formulated as:

An = in+1
L

m=4∑
m=0

cn,mGn,mHn,m (5.5)

where, for each m species, we have:
• the Hn,m terms, including m�, which are time functions; in an equa-

torial system, they consist of linear cos(m�) functions with factors that
depend on the trigonometric function of the declination d; Doodson used
the polar distance, i.e. a declination complement that we designate as Ã =

(p/2)− d;
• the Gn,m terms, called geodesic coefficients, which depend only on the

L latitude of the site;
• the cn,m factors are constant and dimensionless, which could be

considered as ‘standardisation’. Doodson adjusted these factors along with
the geodesic coefficients so that they would have a maximum value (as a func-
tion of the latitude) equal to the selected benchmark lunar potential, as fol-
lows:

CL = 3gaTxL/4
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3. Doodson’s harmonic development

Table 5.2 provides the contributions of the coefficient terms as a function
of the m species and of the n degree of the Legendre polynomial. To simplify
the formulations in the table, Hn,m terms are expressed in the equatorial
system; in the equations given in Appendix A, which are presented above
(A1.1 and A1.4), Hn,m terms are expressed as a function of the ecliptic
coordinates.

Table 5.2: Doodson’s development of the lunar potential.

no species no Pn(cos u) Norm Geodesic terms Variable terms

m n cn,m Gn,m/CL Hn,m

0 2 1 0.5(1− 3 sin2 L) (2− 6 cos2
Ã)/3

0 3 0.004 947 1.118 03(3− 5 sin2 L) sin L (3− 5 cos2
Ã) cos Ã

1 2 1 sin 2L sin 2Ã cos �

1 3 0.011 425 0.726 18(1− 5 sin2 L) cos L (1− 5 cos2
Ã) sin Ã cos �

2 2 1 cos2 L sin2
Ã cos 2�

2 3 0.031 935 2.598 08 sin L cos2 L sin2
Ã cos Ã cos 2�

3 3 0.013 828 cos3 L sin3
Ã cos 3�

Note that Doodson forced the development as far as the Legendre polyno-
mial P4(cos u), which we have disregarded here. The cn,m coefficients pro-
vide relative magnitudes of the different terms of the development. However,
due to the presence of latitude in the geodesic coefficient expression, terms
corresponding to cn,m norms of the same magnitude are not directly compa-
rable with respect to their tidal impact.

3.2 • Fundamental variables

There is no analytical solution for the movement of three bodies in a grav-
itational field, but this movement (and thus all phenomena that exclusively
depend on it) can be described via five independent parameters. When the
tide is taken into account (additional movement of water particles relative to
the Earth), which is regulated by relative movements of three celestial bodies
(Earth, Moon and Sun), a sixth parameter associated with the Earth’s rota-
tion around the polar axis must be added. As the orbits of these celestial
bodies are elliptic, their angular velocity is not mechanically uniform. We
know that the definition of the mean time (see A) is based on the ‘mean Sun’
concept describing the ecliptic of a uniform movement (from vernal point
to vernal point) over the same timespan (tropical year) as the apparent Sun.
This also holds for the mean Sun, which is defined as a hypothetical celestial
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V. Harmonic tidal equation

body whose orthogonal projection on the ecliptic is governed by a uniform
movement with a revolution time identical to that of the real Moon. The
ecliptic longitudes of these fictitious celestial bodies are called ‘mean celes-
tial body longitudes’. Although these names are inaccurate because they
obviously do not designate the actual mean longitudes, they are now time-
honoured terms. In any case, no confusion is possible since the mean of a
cyclic variable is senseless.

Hereafter, and according to the adopted conventions, the symbols s (from
selene, for Moon in Greek) and h (for helios) represent the mean longitudes
of the Moon and Sun, respectively. The mean longitudes of lunar perigee
p, of the ascending node N and of solar perigee p1 are defined according
to the same principle: they are angles (measured positively from the vernal
point) of the corresponding mean elements. These five independent param-
eters are enough to describe movements related to the three celestial bodies
(Earth, Moon, Sun). As noted above, for the movement of a particle on the
globe (fourth mobile element in the ecliptic reference frame), it is necessary
to add a sixth parameter linked with the Earth’s rotation. It would seem nat-
ural to select the local hour of the mean time that accurately describes the
apparent movement of the mean Sun. However, as the Moon is the main
tide-generating body, it is preferable to use the mean lunar time which, for
consistency, will be expressed in degrees. This is t, i.e. the parameter repre-
senting the hour in civil time (n.b. the mean local time plus 12 h). The t vari-
able represents the hour angle of the mean Moon, i.e. plus 180° by analogy
with the civil time. This may be called the ‘lunar civil time’, and is expressed
by equation (figure 5.1):

t° = 15°/h
· th
+ h°− s° (5.6)

These six parameters (t, s, h, p, N, p1) are independent cyclical variables
as there is no common period between any of them. All of these variables
are increasing functions of time, except for the mean longitude N of the
ascending node. For consistency with the other parameters, it is replaced
by its opposite value N′ = −N.

Where T represents the time expressed in Julian centuries of 36525 days
of mean time since 1 January 2000 at midday in civil time (local), Table 5.3
gives the relations as a function of T, thus enabling calculation of the value
of each of these fundamental variables with better than a hundredth of a
degree accuracy over several centuries. This level of accuracy, as sought by
astronomers, is by far sufficient to obtain an excellent quality tidal prediction
over several centuries.
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Figure 5.1: Relationship between the hour angles and mean longitudes of celestial
bodies. Time t (expressed in h), gives the hour angle of 15 · t° (= 15°/h

· th). The
lunar civil hour angle t is thus given by the relation t = 15t + h − s (angles are in
degrees).

4 • Doodson’s classification

Note that the lunar potential amplitudes derived from P4(cos u) are all
10−5 fold lower than the peak amplitude of this potential (M2 wave), apart
from a few that are very close to this lower threshold arbitrarily set by
Doodson. We thus disregard the latter amplitudes and the development
considered here stops at the P3(cos u) term.

Doodson presented all terms of the development in a single table. The
proposed classification is based on the expression of the argument (each
constituent of the potential) by a linear function of six fundamental variables
ranked in order of decreasing angular velocities (Table 5.4). This table also
shows the arguments expressed according to two types of coding (numerical
or alphabetical). The numerical coding proposed by Doodson is discussed
later in the text (with the corresponding literal coding).

When taking equation (5.5) for elementary potentials An and the argu-
ment formulations based on fundamental variables into account, Doodson’s
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4. Doodson’s classification

Table 5.4: Classification of fundamental variables and ratio of magnitudes to the mean
lunar angular velocity.

Rank Symbol Angular velocity Angular velocity Numerical Alphabetical

Degrees/h ratio argument argument

1 t 14.492 052 121 1.00 · 100 1 5 5 5 5 5 A Z Z Z Z Z

2 s 0.549 016 518 3.79 · 10−2 0 6 5 5 5 5 Z A Z Z Z Z

3 h 0.041 068 640 2.83 · 10−3 0 5 6 5 5 5 Z Z A Z Z Z

4 p 0.004 641 822 3.20 · 10−4 0 5 5 6 5 5 Z Z Z A Z Z

5 N′ 0.002 206 407 1.52 · 10−4 0 5 5 5 6 5 Z Z Z Z A Z

6 p1 0.000 001 962 1.35 · 10−7 0 5 5 5 5 6 Z Z Z Z Z A

development (5.4) may be expressed by equation (5.7) given in the following
box, where the mt values define the species number:

Doodson’s harmonic equation

U =
n=3∑
n=2

mt=3∑
mt=0

Gn,mt
(L)×

∀mx=+6∑
∀mx=−5

At,x,p/2 cos

[
mtt+mss+mhh

+mpp+mN′N
′
+mp1 p1 +mp/2

p

2

]
(5.7)

where
• the mx coefficients of the five fundamental variables (x = s, h, p, N′ or
p1) are integers ranging from−5 to+6;
• At,x,p/2 is a simplification of AmtmsmhmpmN′mp1 mp/2

Summation of mx coefficients from−5 to+6 leads to the harmonic series
development of the lunar orbit parameters provided by Brown. Actually, con-
stituents with a value over Doodson’s threshold correspond to mx integer
coefficients within the −5 to +6 range. For the mt species, the G2,mt

(L)

geodesic coefficients are derived from the P2(cos u) term, and the G3,mt
(L)

geodesic coefficients are derived from the P3(cos u) term. Due to the pres-
ence of sines and cosines containing t in Hn,m, the p/2 angle is given in
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equation (5.7) with a mp/2 integer coefficient in such a way that only cosines
are obtained in the development. This coefficient is even for geodesic coeffi-
cients associated with cosines (G2,0, G2,2 , G3,1 , G3,3), and odd for geodesic
coefficients associated with sines (G2,1, G3,0, G3,2).

Doodson’s classification represented an extremely convenient advance in
the presentation of tide-generating potential terms in a single table. Note,
however, that the tide-generating force is a diffuse phenomenon in oceans
and that the geodesic coefficients reflect the effect of latitude on the action of
this force. The result is that when these coefficients are from different Legen-
dre polynomials their origin is distinct, which means that it would be risky to
compare their respective At,x,p/2 amplitudes. This remark applies especially
to harmonic development elements that are linked to geodesic coefficients of
the P3(cos u) term of the lunar potential: presumably they are not compara-
ble to those associated with G2,mt

(L) coefficients. Some constituents of these
two origins also have identical frequencies, which could add to the confusion.
They should be distinguished in the listings to ensure clarity. Because of the
remoteness of the Sun, we have seen that the terms of its generating poten-
tial, derived from P3(cos u), are all negligible. The problem just noted for the
Moon therefore does not apply for the Sun. The nature of the gravitational
pull of the Sun does not differ from that of the Moon, so it seems at first
glance that their effects could be cumulated. However, there also seems to be
a significant complementary action linked to the effect of solar radiation on
the tide level, which thus hampers interpretation. This action, which may be
direct (water dilation) or indirect (meteorological effects), leads to diurnal,
seasonal and annual cycles. This results in tide level variations, i.e. the radi-
ational tide, in addition to diurnal or seasonal variations in the gravitational
tide. By this radiational action, the behaviour of the solar constituents dif-
fers from that of the lunar constituents. Although this effect is weak, it is still
enough to substantially modify the solar gravitational constituents. Since
their respective frequencies are identical, it is not possible to distinguish the
parts associated with each of these actions. It has been proposed that a radia-
tional potential could be introduced, which is calculated from the solar radi-
ation that reaches the Earth’s surface. However, due to the complexity of the
oceanic response to this action, it is not really possible to benefit from these
developments. It would be preferable to list the solar constituents separately
while only maintaining the gravitational potential coefficients in order to be
able to highlight constituents that could eventually be disturbed by radia-
tional frequencies, thus enhancing interpretation of differences between the
respective actions of each celestial body. Only these coefficients may be com-
pared directly to the lunar potential coefficients.
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5 • Doodson numbers, argument numbers and letters

For constituents with a non-negligible value (according to Doodson’s
10−5 criterion), we have already pointed out that mx integer coefficients
of the five astronomic parameters (x = s, h, p, N′, p1), which are involved
in the harmonic development cosine argument, range from −5 to +6. To
obtain a concise representation of this series of figures, by elimination of
the negative signs, it is easy to add a value of 5 to each of them. Moreover,
to avoid having to characterise each of the highest coefficients (5 and 6)
by a two-figure number, the number 10 is usually replaced by the Roman
numeral X and the number 11 is replaced by E (for eleven). For interacting
tidal frequencies, it has even been proposed that a star ∗ and the letter T
(for twelve) could be added for coefficients −1 and +12, respectively. The
mt factor of the Moon’s civil hour angle t, which represents the species
number (hence always positive or nil), remains unchanged. The thus defined
series of figures or letters, including the mt coefficient (unchanged) and then
the figures or letters, is the result of the coding of mx coefficients that are
classified in decreasing order of angular velocities of the five astronomic LP
parameters (x = s, h, p, N′, p1). In other words, here the ‘Doodson number’
or ‘argument number’ refers to the integral number (or alphanumerical
expression) denoted by the ND symbol, such that:

ND = 10(10(10(10(10(mt)+ms+ 5)+mh+ 5)+mp+ 5)+ nN′ + 5)+

mp1 + 5
ND is an integral number for all−5 ≤ mx ≤ 4;
ND is an alphanumerical expression for:

mx = −6 : mx + 5⇒ ∗

mx = 5 : mx + 5⇒ X

mx = 6 : mx + 5⇒ E

mx = 7 : mx + 5⇒ T

where x = s, h, p, N or p1
Let us consider, for instance, the equlibrium argument of the mean semid-

iurnal solar constituent, denoted S2 by Darwin, whose period is exactly 12 h.
Considering equation (5.6), this argument can be expressed in degrees as
follows:

VS2 = 30°/hth
= 2t+ 2s− 2h

This gives the following table for the mx coefficients of the six fundamental
variables, with nD being the Doodson coefficient corresponding to each
coefficient:
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Coefficient mx mt ms mh mp mN′ mp1

Value for S2 2 2 −2 0 0 0

Added figure 0 5 5 5 5 5

nD 2 7 3 5 5 5

from which we deduce the Doodson number representing the S2 constituent:

ND(S2) = 273555

The equilibrium argument of the mean semidiurnal lunar constituent
(denoted M2), is formulated as:

VM2 = 2t

with the following coefficient table:

Coefficient mt ms mh mp mN mp1

Value for M2 2 0 0 0 0 0

Added figure 0 5 5 5 5 5

nD 2 5 5 5 5 5

The argument number for this wave is:

ND(M2) = 255555

This procedure developed by Doodson is still widely used. One of its
advantages is that, since the argument numbers are classified in increasing
order, the angular velocities of the corresponding constituents will be auto-
matically ranked in increasing order. This procedure is often amended by
adding a seventh figure nD,p/2 associated with the mp/2 coefficient to the
Doodson number in equation (5.7). This seventh figure accounts for the fact
that it is the argument of a cosine whose mp/2 coefficient can be positive or
negative. We have seen that this mp/2 coefficient represents the factor that
should be allocated to the p/2 angle so as to ensure that the argument of the
considered constituent will become the argument of a positive cosine coef-
ficient. For consistency, the number 5 is added to mp/2 to form what could
be called the ‘extended Doodson number’, which we symbolise by NE(ii) for
constituent ii.

Hence, when nD,p/2 = mp/2 + 5, for a f argument, we have
• for a positive sine coefficient:

sin f = cos[f− 1(p/2)]⇒ mp/2 = −1⇒ nD,p/2 = 4

• for a positive cosine coefficient:

cos f = cos[f+ 0(p/2)]⇒ mp/2 = 0⇒ nD,p/2 = 5

116



5. Doodson numbers, argument numbers and letters

• for a negative cosine coefficient:

− sin f = cos[f+ 1(p/2)]⇒ mp/2 = 1⇒ nD,p/2 = 6

• for a negative sine coefficient:

− cos f = cos[f+ 2(p/2)]⇒ mp/2 = 2⇒ nD,p/2 = 7

Another very popular alternative involves replacing the argument num-
ber figures by a completely literal codification. Harmonic development of
the tide-generating potential is highly compatible with Doodson’s represen-
tation since most of the constituents have a numerical codification. However,
the harmonic representation of the oceanic response is more complex than
that of the potential. Indeed, hydrodynamic interactions, especially in shal-
low areas, are not linear and new frequencies may be noted on tide level
records (see Chapter I). Some of these compound waves require, for the main
variable coefficients, values that are not within the [−5,+6] interval taken
into account for the potential. The present solution is to replace the Dood-
son alphanumerical characters by letters. The table below shows the corre-
spondence between the m∀ coefficient value of each parameter (including t

and p/2), the Doodson coding nD of the mx and mp/2 coefficients (with the
mt coefficients remaining unchanged), and L, the literal codification of all
m∀ (with no restrictions):

m∀ −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

nD(m∀ 6= mt) ∗ 0 1 2 3 4 5 6 7 8 9 X E T

L(m∀) S T U V W X Y Z A B C D E F G H I J

Traditions obviously have some importance and cannot be disregarded,
but the literal codification is just as easy as that of Doodson. Its use should,
since it is not hampered by any restrictions, be widely adopted (not the
analogy with the time zone principle). Concerning the M2 and S2 con-
stituents exemplified above, their equilibrium arguments are associated with
cosines whose coefficients in the development of the potential are positive
(mp/2 = 0 ⇒ n7 = 5). Recall that NE(qi) denotes the extended Dood-
son number for the qi constituent, or its literal equivalent N

L
(qi). It thus

becomes:
• for the S2 constituent

NE(S2) = 2735555

N
L
(S2) = B BXZ ZZZ

117



V. Harmonic tidal equation

• for the M2 constituent

NE(M2) = 2555555

N
L
(M2) = B ZZZ ZZZ

Note that waves having the same mt form a species. Those with the same
respective mt and ms coefficients form a group. Within a group, constituents
having the same mp, mN′ and mp1 represent a subgroup.

6 • Harmonic tidal equation

So far we have looked at the tide-generating potential developments suc-
cessively proposed by Laplace, Kelvin, Darwin and Doodson. The harmonic
development highlighted the problem of constituent listings, with the con-
stituent numbers continuing to increase, i.e. around 20 for Kelvin, around
40 for Darwin, and over 200 for Doodson. Doodson then proposed a
constituent codification, which was very convenient for the tide-generating
potential. This representation ranks constituents according to increasing
argument numbers with the constituent frequency. However, an analysis
of tide level measurements revealed mt species that were not present in the
potential development, as well as mx coefficients that were not within the
thresholds set by Doodson. The listing of these waves created by nonlinear
hydrodynamic interactions warranted the literal coding based on the repre-
sentation of a wave determined by seven alphabet letters. Moreover, two pro-
cedures were used for the harmonic tide-generating potential development.
The first, which was used by Darwin and Doodson, involves solving the prob-
lem analytically on the basis of current theories concerning the Moon and
Sun. The second, which is hard to apply without access to modern calcula-
tion technology, involves harmonic analysis of the potential over long peri-
ods. Several developments were proposed after Doodson’s, especially by the
terrestrial tide research community, but they did not provide any substantial
advances with respect to the analysis of ocean tides. The development pro-
vided in the tables given in Appendix C are from the analysis of lunar and
solar tide-generating potentials spanning eight orbital periods of the ascend-
ing node of the Moon, i.e. approximately 150 years. The results are similar
(up to the fifth decimal) to those published elsewhere. They have been used
to calculate time series, i.e. completely semidiurnal and completely diurnal,
in order to be able to combine and simulate nonlinear interactions respon-
sible for shallow water waves. These interactions have been calculated up to
the fifth order for semidiurnal constituents so as to be able to reach twelfth
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diurnal species constituents. Around 600 frequencies have thus been deter-
mined (see Appendix D).

6.1 • Oceanic response: compound waves

When a hydrodynamic wave generated by the tide-generating force in the
oceans passes over shallow areas, the water depth influences wave propaga-
tion. High water progression is generally faster than low water retraction due
to the combined effect of friction force, which has a greater impact in shal-
low waters, and the gravitiational wave velocity, which is proportional to the
square root of the depth, especially in coastal regions where the bottom slope
is very gradual. Hence, a wave, which will have the frequency of one tide
potential constituent and be completely sinusoidal in the deep open ocean,
will be deformed and gradually lose this sinusoidal aspect as it progresses
over increasingly shallow bottoms (as in estuaries; figure 1.8). Its amplitude
will increase to the point that it will no longer be negligeable over shallow
bottoms close to the coast. This wave will never undergo modification in
its initial period. However, as its shape will no longer be sinusoidal, its pro-
file modification will be reflected in the spectral domain by the appearance
of harmonics that are greater than the fundamental initial frequency. Actu-
ally, the tidal wave is not entirely sinusoidal and the above schematic out-
line of the deformation process is not completely correct, but the approach
is more acceptable. We postulate that the original wave has an amplitude
and phase that varies periodically, and also that the coefficients of the origi-
nal harmonic development could themselves be the focus of a development
considering the superior harmonics of this modulation frequency. Although
no corresponding developments are required, we have noted the appearance
of constituents whose frequencies are combinations of the fundamental fre-
quency and the modulation frequency.

Other approaches, especially mathematical methods and the perturba-
tion method, can also be applied. The perturbation method is based on
equations that model the hydrodynamics of oceanic tide propagation, while
clearly distinguishing between linear and nonlinear terms (considered as
small perturbations). The solution of the nonlinear part, which contains
only the tide-generating potential frequencies, is specifically inserted into
the nonlinear terms. These terms then give rise to periodic constituents that
include frequency combinations derived from the tide-generating potential.

A tidal wave undergoes spatiotemporal distortion when it propagates into
shallow water areas, thus giving rise, in the spectral domain, to so-called
‘shallow water constituents’ or ‘interaction waves’ that have frequency com-
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binations that derive from the tide-generating potential. Some of these are
harmonic terms of the main tide-generating potential constituents. Hence,
the semidiurnal M2 and S2 constituents give rise to higher harmonic terms,
e.g. quarter-diurnal, sixth-diurnal, etc., given by the symbols M4, M6, . . . ,
and S4, S6, . . . , where the subscript represents the number of oscillations per
lunar day (M waves) or solar day (S waves). However, most shallow water
waves are the result of interactions between tide-generating potential con-
stituents, mainly between the greatest ones, which are (see Tables 5.1a and
5.1b): M2, S2,N2, K2, K1, O1, P1 and Q1. The symbols adopted to represent
each interaction wave consist of the letters of the main constituents from
which they are derived and a subscript representing the species to which
the wave belongs, i.e. the number of cycles per day. For instance, the con-
stituent having an angular velocity equal to the sum of those of M2 and S2
represents the quarter-diurnal wave symbolised by MS4. The examples given
below should familiarise readers with these notations. Where qi denotes the
angular velocity of constituent i, we have, for instance:

qKQ1 = qK2 − qQ1

q2MS2 = 2qM2 − qS2

qMK3 = qM2 + qK1

q2MK3 = 2qM2 − qK1

qMS4 = qM2 + qS2

q2MKS4 = 2qM2 + qK2 − qS2

q4MK5 = 4qM1 + qK1

q2MK5 = 2qM2 + qK1

q2MS6 = 2qM2 + qS2

q2(MS)K6 = 2(qM2 + qS2)− qK2

Letters representing tide-generating potential constituents involved with
negative angular velocities are placed in the last position. Some interaction
waves have the same angular velocities as constituents of this potential, e.g.
for the 2MS2 wave combined with the m2 variational constituent of the
potential, or 2MN2 combined with the L2 minor ellipsoid.

Once produced, these interaction constituents propagate autonomously,
eventually beyond the zone from which they originated, e.g. quarter-diurnal
waves have been noted in the middle of the Atlantic Ocean. Moreover, they
may eventually be amplified or, conversely, attenuated depending on the
propagation conditions. They may also interact and give rise to interactions
of a higher degree.
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Numerical modelling may be used to quite accurately simulate them but,
because of the extremely high complexity of their interactions and propaga-
tion, which depends closely on the bathymetry (generally very chaotic), it is
impossible to provide any elements that could be used to even roughly deter-
mine rules underlying their behaviour. At most, it may be stated that when
the tidal amplitude is substantial it is quite likely that these interaction waves
will be relatively strong in shallow areas. Estuaries with a quite simple geom-
etry have been the focus of studies whose results have facilitated interpre-
tation of the highly typical deformation of the tidal curve during the tide’s
upstream progression. Simultaneous water level measurements at several
points along estuaries have thus enabled analysis of interaction tidal wave
behaviour and modelling of the formation process. The curves (figure 1.8)
obtained for the Gironde River basin (France), clearly show the deformation
of the wave shape between Verdon (at the mouth of the estuary) and Bor-
deaux (≈100 km upstream) for both flood and ebb tides. The flood tide
duration, which is around 7 h at the Verdon site, decreases gradually as the
tide progresses upstream, i.e. it is only around 4.5 h at Bordeaux. Conversely,
the ebb tide has a longer duration upstream (≈ 8.5 h at Bordeaux) than at
the mouth of the estuary (≈ 6 h). The propagation velocity at high water
is thus faster (≈40 km/h) than that at low water (≈25 km/h). The approx-
imately sinusoidal wave shape at the estuary mouth is transformed to the
extent that cusps may be noted on curves plotted for the most upstream sites.
This feature, which is very marked around low water, denotes a discontinu-
ity in the water height variation pattern. Tide logs obtained even further
upstream revealed even more marked irregularities at high water of spring
tide. Such marked irregularities give rise to a tidal bore phenomenon, i.e. a
breaking wave that forms at around low water and propagates up the estu-
ary. In the spectral domain, the tidal bore and even the turning point of
the tidal curve can only be reflected by a series of spectral lines extending
to infinite frequencies that are beyond reach for analysis. Excluding these
extreme cases, analysis of esutuary tides generally reveals spectral lines past
the twelfth diurnal. An indepth analysis of the high frequencies also revealed
a proliferation of interacting waves evolving with the species degree. All
of these specific features complicate harmonic analysis of this type of tide.
Indeed, the harmonic analysis method is based on identification of the ori-
gin of all constituents involved in constituting the spectral line representative
of the interaction wave. Experience has shown that this is a laborious task for
species above the twelfth diurnals. This problem is further complicated by
the fact that the discharge of streams running into estuaries interacts with
the tides. With two different discharge rates, two different corresponding
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spectral signatures will influence the tidal curve. Here we are reaching the
limits of application of the harmonic analysis method.

6.2 • Harmonic tidal equation

As the tide level at a given site depends not only on the time, the chosen
temporal reference must be specified before formulating the harmonic tidal
equation. First, for convenience, the time unit used in the harmonic tidal
equation is the mean time (in hours), preferentially to the legal unit (i.e.
seconds). There are several temporal reference possibilities available for
tide logging or forecasting. We could adopt one of the following references
(expressed in hours):
• t0, the universal time (UT), which is the civil time at the baseline

meridian (Greenwich meridian);
• tn, the time in time zone n at site M(n.b. n ranges from 0 h to 23 h

eastward from Greenwich, with 1 corresponding to 15°).
• t, civil time at site M on longitude meridian G (measured positively in

degrees eastward from the baseline meridian).
These temporal references are linked by the following relations:

t0 = tn − n = t − (G/15)

tn = t0 + n = t + n− (G/15)

t = t0 + (G/15) = tn + (G/15)− n

(5.8)

For the study of the tide-generating potential, we have used the local civil
time (symbolised above by t). The oceanic response to excitation of the tide-
generating force at a given site leads to a temporal variation in the tide level
h(t), which may be in the form of a sum of sinusoidal functions:

h(t) =
∑

i

hi cos[Vi(t)− ki]

where hi is the amplitude of argument Vi(as a function of t), which can
be an equilibrium argument or an argument of an interaction constituent
(combination of equilibrium arguments):

Vi = mt,it+ms,is+mh,ih+mp,ip+mN,iN+mp1,ip1 +mp/2,i
p

2

where t = 15t+h− s, and the phase lag ki is called the phase lag of the Vi(t)
argument.

We have seen that fundamental variables (s, h, p, N′ and p1) are linear
functions of time. Hence, for each i constituent, a constant angular velocity
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qi may be determined and is generally expressed in degrees per hour. The
following equation can thus be formulated:

h(t) =
∑

i

hi cos(Vi,0 + qit − ki)

where Vi,0 is, as in equation (5.1), the equilibrium argument at time t = 0
(justification of the second subscript in Vi,0). With the temporal reference
t, the ki parameter represents the absolute phase lag of constituent i. If this
constituent is directly derived from the potential, the time period obtained
by dividing the ki phase lag by the angular velocity qi represents the lag
of wave i with respect to the element corresponding to the tide-generating
potential. The harmonic constants of tide relative to a site M are formed by
the set of ki phase lags and hi amplitudes calculated for this site.

The civil time at a site is seldom used in practice. Instead, the universal
time or the time in the time zone of the site are used for routine purposes.
Equations (5.8) enable us to determine the relative phase lags with respect to
the Greenwich meridian by using:
• the universal time (UT), denoted here by t0,
• or the time tn of the local time zone n.
Note first that in the light of the third part of equation (5.8), the funda-

mental variable t at site M is expressed as a function of time t0 by:

t = 15t + h− s = 15t0 + h− s+ G

Moreover, for t = 0 ⇒ t0 =
−G

15
, the equilibrium argument Vi,0 of

constituent i, with angular velocity qi, can thus also be formulated as follows:

Vi,0 = Vi,0,0 +mt,iG− qi
G

15

where Vi,0,0 is the equilibrium argument of constituent i at the Greenwich
meridian at time t0 = 0, with mt,i being the species to which this constituent
belongs.

Hence, depending on the temporal reference used, we have three equa-
tions:

h(t) =
∑

i

hi cos
(
Vi,0 + qi.t − ki

)
h(t0) =

∑
i

hi cos
(
Vi,0,0 + qit0 − gi,0

)
h(t) =

∑
i

hi cos
(
Vi,0,0 + qitn − gi,n

)
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Recall that ki is the absolute phase lag of constituent i. Parameter gi,0
is then the relative phase lag with respect to the Greenwich meridian and
at universal time t0, and gi,n is the relative phase lag with respect to the
Greenwich meridian and at the time in the local time zone tn = t0 + n.

The relationships between these different phase lags are deduced from the
previous equations concerning the temporal references:

gi,0 = ki −mt,iG

gi,n = gi,0 + qin

Amplitudes hi and phase lags (ki, gi,0 or gi,n) are harmonic constants of
tide, and in practice cannot be separated from the time.

In practice, only constants from Darwin’s list are generally available. The
others are considered with nodal corrections (amplitude fi and phase lag
ui factors) which are assumed to be constant over a period of around a
year. The harmonic equation used in current practical applications is thus
as follows:

h(tn) = hNM +
∑

i

fihi cos(Vi,0,0 + qitn − gi,n + ui)

where hNM is the mean water level at the considered site.
Nodal corrections are available in table form, but they can also be calcu-

lated from Doodson’s development while also taking known nonlinear inter-
actions into account. This latter issue is studied in the next chapter.
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Harmonic analysis

The first analysis methods that were developed for manual tide prediction
computation are not covered in this document. They are based on simple
linear combinations of tidal height measurements (i.e. integer coefficients)
designed to amplify a given wave while more or less eliminating other con-
stituents and noise. Some of these analysis methods (there are many) have
been adjusted to be suitable for automatic computation and are likely still
being used, especially Doodson’s method. However, because of their lack of
flexibility, they do not always tap the full potential offered by modern com-
putation methods.

The methods described in this chapter are highly efficient for dealing with
long historical data series (up to 150 years) and are flexible enough to accept
even short-term tidal data and series with gaps in the data. Like all quan-
tifiable phenomena, temporal water level variations – with the tide being a
major constituent – can be readily analysed by spectral techniques using the
Fourier transform. Key elements concerning Fourier transforms and series
are presented in Appendix D. However, they are briefly outlined here to high-
light the impact of aliasing in the analysis of very broad spectrum tides.
Then, because of the many constituents (potential and compound waves:
around 600 frequencies are listed in Appendix D), we will see how a filter
was tailored to deal with separate species. Meteorological effects and mea-
surement errors give rise to spectral perturbations, which are considered as
noise in tidal analysis, that must be effectively eliminated. Moreover, the
focus is placed especially on the problem of poorly separated constituents
and on efficiently conditioning the harmonic analysis by the least-squares
method. Finally, the question of nodal corrections and interaction waves is
discussed.
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1 • Spectral analysis

Spectral analysis involves locating, on a frequency scale, amplitudes that
are ‘significant’ relative to temporal variations in the studied phenomenon,
i.e. tide level in our case. Considering its periodic pattern, the tide would
clearly seem to be amenable to this type of analysis. The general spectral
features of tides were already discussed in Chapter I (figures 1.9, 1.10 and
1.11). The tide has amplitudes that are much higher than the noise at typical
clearly established frequencies – it is said that the tide has a line spectrum.
The examples given in these figures were obtained using an algorithm called
a fast Fourier transform (FFT), but it is actually a rapid algorithm of a
discrete Fourier transform (DFT).

Readers requiring further details on fundamental elements of Fourier
transforms and series should refer to Appendix D, especially to gain greater
insight into the role played by sampled data distributions (Dirac pulse or
rectangular distribution).

1.1 • Overview of spectral analysis of tide

At a given location and at time t, h(t) represents the tidal height above its
average level. The harmonic tidal equation is represented by the sum of its
constituents i:

h(t) =
∑

i

hi cos(V0i + qit − gi) (6.1a)

where here the value of i is considered as a sequence number (i ∈N∗)
according to the angular velocities qi (positive). Note that parameter V0i is
the cosine argument in the development of the potential at time zero (t = 0)
and gi is the phase lag of the tide at the considered site (this parameter is
dependent on the temporal reference frame used: LT is the standard or local
civil time).

Assuming that

hi = hie
−j(gi−V0i)

and

ni =
qi

2p

(6.2)

equation (6.1a) becomes:

h(t) =
1

2

∑
i∈N∗

(
hie

j2pnit + h
∗

i e−j2pnit
)

(6.1b)
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In practice, observations are recorded at a regular interval, with measure-
ments obtained every te. Where M is the number of samples, the useful
observation period is T = Mte.

Where PT,te (t) is the rectangular distribution, it is defined by:

PT,te (t) = te

m=M−1∑
m=0

d (t −mte)

The part of the h (t) record sampled by the rectangular distribution
1

T
PT,te (t) is represented by the distibution in figure 6.4:

hT,te (t) =
1

T
PT,te (t) h (t) =

1

M

m=M−1∑
m=0

h (mte) d (t −mte) (6.3)

For a Fourier transform FT,te (y), a continuous function of the frequency,
this distribution assumes:

FT,te (y) =

∫
hT,te (t) e−j2pyt

=
1

M

m=M−1∑
m=0

h (mte) e−j2pymte (6.4)

Expressing h (mte) according to equation (6.1b) reveals geometric series
of ratios ei2p(yi−y)te and e−i2p(yi+y)te . This therefore becomes:

FT,te (y) =
1

2

∑
i

[
hiL
∗
T,te

(y− yi)+ h
∗

i LT,te (y+ yi)
]

(6.5)

an expression in which LT,te (x) =
sin (pxM te)

M sin (pxte)
e−jpx(M−1)te

Note that LT,te (y) is the FT of the rectangular function
1

T
PT,te (t), which

enables us to obtain equation (6.5) directly by the convolution product

FT,te (y) = LT,te (y) ∗ F (y) (6.6)

where ye is the sampling frequency (ye = 1/te), the periodic character of
FT,te (y) in the frequency domain (FT,te (y) = FT,te

(
y+ kye

)
), associated

with its Hermitian character for the real temporal function (FT,te (y) =

F∗ (−y)), thus giving equation:

FT,te (ye/2− Dy) = F∗T,te

(
ye/2+ Dy+ kye

)
which leads to aliasing, with Dy being any frequency deviation. Frequency
yN = ye/2 is called the Nyquist frequency. Spectrum

∣∣FT,te

∣∣ thus has two
symmetry axis families: y = kye and y = yN + kye.

Consequently, the spectrum derived from the sampling function of a real
signal is only representative of a real spectrum if the external constituents
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VI. Harmonic analysis

at frequency interval [0, yN] can be overlooked (Shannon’s theorem). For
a complex signal, the Hermitian character is not verified, so the interval
becomes [−yN, yN]. If necessary, prefiltering may be performed to get to
these cases.

There are nevertheless situations in which the sampling frequency is such
that constituents detected in the useful observation period are not represen-
tative of the real spectrum but instead derived from a number of aliasing
distortions. This is the case, for instance, with respect to tidal heights deter-
mined by spatial altimetry, where the acquisition period is a few days. Then
it is still possible to use DFT but, for each spectral constituent detected with a
frequency of yd, a k value must be attributed in order to clarify y = ±yd+kye.
This is possible for tidal constituents, since they have perfectly established
frequencies.

Based on

LT,te (y) =
sin (py M te)

M sin (py te)
e−jpy(M−1)te

(FT of the rectangular function
1

T
PT,te (t)), discretized according to the

frequency step yT = 1/T, which gives:

LT,te (y)

n=M/2−1∑
n=−M/2

d (y− nyT) =

n=M/2−1∑
n=−M/2

sin np

M sin (np/M)
e−jnp

M−1
M (6.7)

= d (n)

All the terms are thus zero, except that for which n = 0, which corre-
sponds to the Dirac pulse d (y).

To the normalized rectangular distribution, a discrete series of time steps
te,

1

T
PT,te (t) =

1

M

m=M−1∑
m=0

d (t −mte)

may be mapped with a discrete transform (line spectrum every yT = 1/T)
in the symmetrical rectangular frequency distribution of width ye.

Let yT = 1/T.
The symmetrical rectangular frequency distribution

Pye,yT (y) =

n=M/2−1∑
n=−M/2

d (y− n yT) (6.8)

enables mapping, at the sample distribution hT,te (t), of the DFT defined by:

Fye,yT (y) = Pye,yT (y) FT,te (y) (6.9)
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1. Spectral analysis

In other words, Fye,yT (y) is the sampling of FT,te (y) by the symmetrical
rectangular distribution Pye,yT (y) having width ye with the elementary inter-
val yT.

According to equations (6.5) and (6.8),

Fye,yT(y) =

n=M/2−1∑
n=−M/2

∑
i

[
hiL
∗
T,te

(n

T
− yi

)
+ h
∗

i LT,te

(n

T
+ yi

)]
d

(
y−

n

T

)
(6.10)

DFTs represent a series of distributions that are spaced regularly on the
frequency axis. They thus have a line spectrum. In Appendix D (part 4.2), it
is shown that, based on Fne,nT(n), the inverse DFT again gives us the initial
series hT,te(t). Hence, there is a total correspondence between the sample
distribution and its DFT, with each series bearing M elements:

hT,te(t)⇐⇒ Fne,nT(n)

Hereafter we will mainly use the acronym FFT since, in practice, it is more
commonly used than DFT.

1.2 • Tidal spectrum features

Shannon’s theorem cannot be satisfied with the selected sampling because
of the range of the tidal spectrum. It is therefore not possible to determine
whether or not a value calculated via the FFT at a given frequency is actually
due to spectral constituents that are symmetrical in relation to one of the
axes of equation n = kne/2 (aliasing).

We will, for the moment, only apply these results qualitatively to deter-
mine the tidal spectrum trend. It is interesting to study the behaviour of
tidal constituents. Figure 6.1 illustrates the application of FFT results to con-
stituent i (assuming hi = 1 and V0i − gi = 0), where hi(t) = cos (2pnit),
with period Ti = 1/ni = 3.23te, and where the sampling interval te is taken
for the unit time over a duration of T = 40te. Shannon’s theorem is satisfied
with the sampling selected in this case (ni < nN = ne/2). In the positive
frequency domain, a continuous spectrum is a representative curve of the
function

∣∣
L
∗
T,te

(ni − n)+ LT,te(ni + n)
∣∣.

This example shows the bias that this technique introduces in the detec-
tion of periodic signal constituents. In the domain (0, nN), around 20 verti-
cal bars appear with a maximum length of less than 1 (value of the sought-
after constituent). The signal frequency value ni, corresponding to the first
peak of the continuous spectrum (red curve), is located between the first two
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Figure 6.1: The two spectra (continuous and discrete) are established on the basis of
a function cos(2pnit) with a period of Ti = 1/ni = 3.23te, sampled over a duration
of T = 40te with a time step te taken for the unit time. The x-axis is graduated in
1/40 frequency units ne = 1/te; the values are from coefficient n of nn = n/T. The
red curve represents the continuous spectrum of the sampled signal. Black segements
over the entire x-axis represent the corresponding line spectrum. Beyond the Nyquist
frequency (nN = 20/T), the plot highlights the symmetry relative to axis n = nN of the
sampled function spectrum.

of the highest vertical bars. When duration T is exactly equal to a multiple
ni of the period of constituent i, the spectrum will then reveal a single line of
unit length corresponding to the constituent’s value at frequency ni = ni/T.

The most unfavourable situation is when ni = (n ± 1/2)nT. Even in this
case, a constituent may still be revealed by the presence of two neighbouring
lines of the same amplitude of 1/ [M sin(p/2M)] ≈ 2/p with M � 1. The
presence of secondary peaks could, however, impede the detection of low
amplitude constituents.

Since the tide is not a periodic phenomenon, no duration T that generates
a single spectral line for each constituent – T would have to increase to infin-
ity to achieve this. It is nevertheless possible, at least for main waves, to get
close to this ideal situation by choosing an observation time that is around
an integral number of solar days, lunar days and lunations. Moreover, the
resolution increases as the duration of the signal to be processed increases.
Figure 6.2 shows the results obtained for the same constituent i examined
above, and sampled with the same time step but over twice the period. The
spectral line close to the sought-after frequency has a greater signature than
in the previous treatment.

When Shannon’s theorem is not satisfied, sampling a constituent
cos(2pnjt) where nj = 2nN − ni > nN would reveal, within the inter-
val (0, nN), a constituent at frequency ni that is not present in the real signal.
In figure 6.2, constituent j is represented by the second peak, close to the line
corresponding to coefficient n = 55.
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Figure 6.2: Here the two spectra (continuous and discrete) of the same constituent
i are obtained by sampling over twice as long a period, i.e. T = 80te. The x-axis is
graduated in 1/80 frequency units (coefficient n of nn = n/80te). Here the Nyquist
frequency (nN = ne/2) corresponds to n = 40. Note that the highest vertical bar is
close to the continuous spectrum peak.

Experience proves that an observation duration of more than 30 years is
required to obtain a sufficiently high resolution to be able to detect all signifi-
cant tidal constituents. A step-by-step process is still possible if the observa-
tion period is insufficient. By this strategy, the predominant constituents are
subtracted from the signal since their secondary peaks could hamper detec-
tion of more minor constituents, and the FFT of the resulting signal is then
calculated.

Figure 6.3 presents common tidal characteristics in this type of repre-
sentation, showing groups of lines, called species, separated by domains in
which only noise prevails. This noise – generally of meteorological origin –
is mainly detectable at low frequencies (less than 1-2 cpd). The frequency
domain of the swell and waves was filtered out of the records upon which
these results were based (filtering due to a stilling well, with an additional
digital filter sometimes also applied).

The x-axis is graduated in cycles/day (cpd of the mean time), with integer
values giving the order number of each species. The gradual shift in the
mean frequency of each species towards values below the x-axis integers
(figure 6.3) highlights that the species are centred on lunar day harmonics
TL = 24.841 2 h (24 h 50 min 28.3 s). Hence, for instance, a so-called 12th

diurnal species would have a centre frequency of about 11.6 cycles, which
corresponds to 12 cycles/lunar day. Figure 6.3 is a spectral image derived
from an FFT (or DFT).

We have seen that the temporal series of sampled observations and the
associated Fourier series (distribution that gives a line spectrum) are closely
matched, with each containing exactly the same amount of information.
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2. Reduced-height method

It is thus very important to note that FFT accurately represents an
observed signal, irrespective of the procedure used to compute it. For the
harmonic analysis of tides, only frequency domains containing spectral lines
of species are of interest for tidal prediction. Hence, there is relatively little
useful spectral information despite the breadth of the spectrum and, because
of the equivalence principle discussed above, this could also be applied in the
temporal domain to reduce the number of data.

These considerations are especially interesting with respect to long-term
observations. In such cases, the very high data quantity can hamper pro-
cessing, especially due to the substantial number of cumulated rounding
errors that occur during computation. This same approach encourages sep-
arate processing of species. A global problem consisting of many operations
is thus split up into several partial problems that are easier to solve, thus
enabling us to obtain more accurate solutions for each species.

Each species actually has quite a high number of spectral lines, as shown
in figure 6.4, which represents the semidiurnal domain shown in figure 6.3,
but with better definition.

The phase and amplitude of a constituent are unknowns in harmonic anal-
ysis. Frequencies derived from the the potential or from compound waves
are obviously assumed to be known (see Appendix D). Restricting the prob-
lem solving process, by always just focusing on single species, considerably
reduces the number of unknowns and consequently the difficulty of the over-
all operation. Since with this operation a linear system has to be solved (see
Chapters IV and V), it is not always easy to properly condition a system that
takes all species into account.

2 • Reduced-height method

For the reasons discussed above, it would seem more suitable to perform
band-pass filtering so as to be able to deal with each species separately. We
have seen that the error nTL = 1/TL between centre frequencies of neigh-
bouring species corresponds to an angular velocity error of one cycle/lunar
day, or 14.492 05°/h. Moreover, the half band width for each k species (rela-
tive to the centre frequency knTL ) is not more than±2.5°/h, or around 20%
of the base error nTL . In figure 6.4 for instance, we may note that for semidi-
urnal species at Le Havre (France) all constituents of over a few millimetres
are included in this interval.

Moreover, we know that a frequential convolution corresponds to a tem-
poral filtering and that, conversely, a temporal convolution corresponds to a
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2. Reduced-height method

frequency filtering. For tidal analysis, we normally have access to a temporal
representation, so a specific temporal filter thus has to be built with a fre-
quential convolution (often called a transfer function) having a half-width of
around 20% of the error nTL . From a physical standpoint, it is not possible to
build a perfect filter. However, several filters specifically tailored for tidal har-
monic analysis have been developed. This is the focus of the current chapter,
which will cover the definition of ‘reduced height’, and harmonic analysis
by species based on the corresponding ‘reduced vector’ method. Harmonic
constituents have been obtained within each species by solving a system of
equations (with reduced vectors) using the least-squares method to elimi-
nate noise, or directly by FFT, depending on the case. These techniques have
been used by the French Hydrographic Service since 1974.

In practice, we have seen that the Fourier series of a sampled curve is
determined using an FFT algorithm. The FFT computation time on a
computer is thus minimized when the number of samples is a power of 2
(2p). Based on measurement readings, which are generally logged hourly,
a new sampling is often carried out by parabolic interpolation in order to
obtain M = 25

= 32 values/lunar day (TL = 24.841 2 h). Data recomputed
in this way are used for harmonic analysis by the so-called ‘reduced heights’
by reduced vectors at a given time method. For tidal analysis, this method
is equivalent to applying a temporal filter to isolate the estimator of the
global constituent of each species at a given time. To ensure that the filter is
well adapted to the problem at hand, the estimator of this global amplitude
(which will be translated here in its complex form) should represent the sum
of waves forming the species at the considered time.

2.1 • Definition of reduced vectors

To get back to the harmonic tidal equation where the tidal height h(t)
can be formulated by highlighting species that are designated here by the
subscript k (equivalent to the value of parameter mt in Chapter V):

h(t) =
∑

k

∑
i

hki cos(V0ki + qkit − gki) (6.11a)

or even:

h(t) =
1

2

∑
k

∑
i

hki

[
ej(V0ki+qkit−gki) + e−j(V0ki+qkit−gki)

]
(6.11b)

where:

hki and qki are the amplitude and angular velocity of constituent i of
species k;
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VI. Harmonic analysis

V0ki is the argument at time zero (t = 0; subscript 0) of this constituent,
which can be of astronomical origin (argument of the cosine of the tide-
generating potential) or be the result of a combination of astronomical
arguments that give an interaction constituent in species k;

gki is the phase lag of the constituent; this parameter is always associated
with the reference time used (local time, UT or time zone).

By introducing the frequency error yki between qki/2p the centre fre-
quency k/TL of species k (i.e. TL, lunar day length), we have:

yki = qki/2p− k/TL (6.12)

Then let Ck(t) be the complex value (representing a vector) given by the
equation:

Ck(t) =
∑

i

hkie
j(V0ki+2pykit−gki) (6.13)

Equation (6.11b) for the tidal height thus becomes:

h(t) =
1

2

∑
k

[
Ck(t)ej2p

k
TL

t
+ C∗k(t)e−j2p

k
TL

t
]

(6.14)

where Ck(t) is a complex number called the reduced vector of species k at
time t.

We have seen that the half band width associated with each species is rela-
tively narrow (≤ 2.5°/h) in comparison to 360°/TL ≈ 14.5°/h, i.e. the inter-
val between the centre frequencies of two neighbouring species (TL |yki| <

0.2). Hence, the reduced vectors Ck(t) vary slowly with respect to the tidal
height h(t). We can interpret them as slow variations in amplitude and in the
phase associated with each species.

These reduced vectors all contain information relative to each species as
long as they can be isolated by a specially adapted filter. The following
advantages could be expected if an optimal temporal filter is available:
• for astronomical tide analysis, the data are processed more efficiently

because the spectrum, excluding frequency bands associated with species, is
disregarded
• each species can also be treated individually, and in this way a diffi-

cult overall problem can be transformed into several easier to solve sub-
problems.

2.2 • Definition of reduced heights

Note that equation (6.14) resembles a Fourier series. It is obviously not
a Fourier series because the coefficients are time dependent, but their slow
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2. Reduced-height method

variation reflects the fact that the tide is almost periodic with a period TL.
This finding provides a guide for defining a temporal filter tailored to tidal
observations.

Interestingly, the reduced height method resembles the British Admiralty
semi-graphic analysis method. From this standpoint, it could be considered
as a formalisation and generalisation.

Let us consider a time t0 in the vicinity of the time of a measurement h (t),
such that the maximum error |t − t0| is around a lunar day. We call function
H (t0, t) the ‘tidal height’ at time t reduced at time t′0, as formulated by the
equation:

H (t0, t) =
1

2

∑
k

[
Ck (t0) ej2p

k
TL

t
+ C∗k (t0) e−j2p

k
TL

t
]

(6.15)

Because of the low frequency error yk,i values, the reduced vectors vary
slowly, as does the reduced height H (t0, t) relative to t0.

The centre frequencies k/TL of each species were naturally selected as
centre frequencies of band pass filters that we are going to build. However,
as the observation data sampling frequencies are always a fraction of the
solar day (usually 1 h), the observations must be resampled for a strict
application of the method. However, it is possible to avoid this resampling
by using filters k/25 h−1, close to k/TL, as centre frequencies. In this case,
the practical application is substantially simplified and leads to what can be
called ‘reduced heights at midday’, as the times t0 are set daily at midday.
Errors between centre frequencies of filters built in this way and k/TL do
not really have a significant impact if k ≤ 12, i.e. throughout the accessible
spectrum using hourly observations. This is no longer true with respect to
fluvial tides where the energy may still be detected beyond the 30th diurnal.

The following considerations will be as general as possible.
Reduced heights H (t0, t) have the following properties:
• because of the low frequency error yki values, the reduced vectors vary

slowly. This is also the case for reduced heights with respect to u = t0 − t

• because of the periodicity of the complex exponents ej2p
k

TL
t and

e−j2p
k

TL
t, the reduced heights are periodic, with a period of TL relative to

their second argument:

H (t, t) = h (t)

H (t − TL, t) = H (t − TL, t − TL) = h (t − TL)

H (t + TL, t) = H (t + TL, t + TL) = h (t + TL)

Determination of reduced heights is clearly of interest because the reduced
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vectors Ck (t0), which are periodic with a period of TL, are coefficients of the
associated Fourier series. They are computed on the basis of the previously
described properties.

The slow variation in reduced heights as a function of the initial argument
a priori enables us to approximate them using a limited development:

H (t0, t) = H (t + u, t)

= H (t, t)+ u

∂H (t = t, t)
∂t

+
1

2
u

2 ∂2H (t = t, t)
∂t

2 + . . . (6.16)

The accuracy of the result obviously depends on the degree of develop-
ment, but also on the possibility of calculating the successive derivatives of
H (t, t) on the basis of available observations h (t).

The best approximations that can be achieved for these derivatives, assum-
ing that observations are available for the interval between days t − TL and
t + TL, are obtained by the following equations, where the derivatives are
approximated via finite differences:

∂H (t = t, t)
∂t

≈
1

2

[
H (t, t)−H (t − TL, t)

TL
+

H (t + TL, t)−H (t, t)
TL

]
=

h (t + TL)− h (t − TL)

2TL
(6.17)

∂2 (t = t, t)
∂t

2 ≈
1

TL

[
H (t + TL, t)−H (t, t)

TL
−

H (t, t)−H (t − TL, t)
TL

]
=

h (t + TL)+ h (t − TL)− 2h (t)

T2
L

(6.18)

Thus giving the limited second-order development:

H (t0, t) ≈ h (t)+ (t0 − t)
h (t + TL)− h (t − TL)

2 TL

+ (t0 − t)2 h (t + TL)+ h (t − TL)− 2h (t)

2 T2
L

(6.19)

2.3 • Reduced vector computation

Because of the periodicity of H (t0, t) with respect to the second argument,
the reduced vectors Ck (t0) are coefficients of the Fourier series of this tidal
height sampled over a duration of TL. In practice, when calculating reduced
vectors, the observations (initially often hourly) can be resampled to obtain
a number of tidal heights per lunar day equal to a power of 2, and then the
very efficient Tuley-Tukey FFT computation algorithm can be used.
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2. Reduced-height method

However, to be able to calculate the transfer function while still remaining
general, t0 can be used as the temporal reference point. Morover, it is rec-
ommended that the computations be performed symmetrically with respect
to this time zero in order to avoid introducing a phase lag. In the following
equation, we have M = 2N+ 1 (odd number) reduced heights separated by
a time interval te = TL/M.

Ck (0) =
2

M

n=N∑
n=−N

H (0, nte) e−j2p
kn
TL

te (6.20)

Reduced vectors are thus obtained by temporal filtering while taking the
observation data around time zero into account.

The transfer function of this filter depends on the extension of equation
(6.16). It is obtained (like all transfer functions) by filtering the complex
exponent ej2pyt. This computation is based on the expression of a geomet-
rical series and on its successive derivatives according to the filtering degree.
Let us call FT0, FT1, FT2, . . . the filtering degrees 0, 1, 2, . . .

FT0 (y) =
1

M

sin (pyTL)

sin (py te)
FT1 (y) = FT0 (y)2 [M sin pyTL sin py te + cos pyTL cos py te]

FT2 (y) = FT0 (y)3
[

1+
M2
− 1

2
sin2 (pyte)

] (6.21)

Based on the fact that the angular velocities of tidal constituents are 2.5°/h
on both sides of the centre frequency of each species, the filter resulting
from the second-order polynomial development is clearly very efficient (FT2
curve in figure 6.5). Almost all constituents of each species are thus pre-
served and, because of the low transfer function values at points located at
n/TL frequencies, this filter almost completely suppresses the effects of con-
stituents associated with other species. This latter point is especially impor-
tant and overcomes the FT0 filter, which allows the contamination of a given
species by neighbouring species. The FT1 filter is not too bad from this
standpoint, but it is markedly less good in the [-2.5°/h, 2.5°/h] interval and,
since it must take just as many observations as required for FT2 into account
(from t0 − (3/2)TL, to t0 + (3/2)TL), this FT1 filter is of limited interest.

The FT3 filter is slightly better than FT2, but an additional day has to be
taken into account (from t0 − 2TL to t0 + 2TL) for very little improvement
in performance. However, since it is able to diminish noise between tidal
frequencies, it has been beneficially applied for the analysis of tidal current
observations that are regularly hampered by considerable noise. In this
case, the loss of 2 days at the beginning and end of the observation period
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Figure 6.5: Graphical representation of filters FT0, FT1 end FT2.

(which is often short) can turn out to be an impediment. A special end-point
treatment can be applied to overcome this problem.

Consider a time t0, in the vicinity of the measurement time h(t) such that
the maximum error |t0 − t| is around a lunar day. When t0 = t + u, we thus
obtain: |u| ≤TL. Note that other limit options are possible depending on the
filter to be used. The ‘tidal height’ at time t, reduced at time t0’ is what we
call function H(t0, t) given by equation (6.16).

This tidal height is often simply called the ‘reduced height’. Due to the
low frequency error yki values, the reduced vectors vary slowly, as does the
variation in the reduced height H(t0, t) relative to u = t0 − t.

Based on a series of measurements, the reduced vectors Ck are generally
calculated with a regular time step tc. This interval tc should be selected
such that Shannon’s theorem, concerning the sampling, is respected. For
all errors yki relative to the corresponding centre frequency k/TL, condition
|yki| ≤ 1/2tc must be fulfilled.

As we have: max |yki| ≈
2.5°/h

360°
=

1

144h
, we thus require: tc ≤ 72 h.

For each species, computing a reduced vector every 72 h is sufficient to
avoid aliasing errors in the tidal frequency domain. We thus have consider-
able liberty concerning the choice of sampling interval tc in the determina-
tion of reduced vectors. This feature facilitates the use of an FFT algorithm.
A time step of under 72 h should be chosen, while making sure that the num-
ber of reduced vectors calculated over the observation period is a power of 2,
and also that the maximum amount of available data is taken into considera-
tion. When there are measurement errors, the FFT cannot be applied – then
a reduced vector is computed per lunar day to ensure that a maximum num-
ber of observations are taken into consideration.
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3. Noise in tidal analysis

We will see later that harmonic analysis based on a series of reduced vec-
tors obtained in this way simply involves solving a number of linear equa-
tions equal to the number of species considered. Although the noise issue
has already been pointed out, it is important to examine this perturbation on
the basis of a few examples before dealing with solving ‘normal’ equations of
the harmonic analysis by species.

3 • Noise in tidal analysis

The previous developments dealt especially with theoretical tides just
involving harmonic constituents. In real situations, the sea level, as recorded
by instruments, is the result of tidal contributions (astronomical and radi-
ational (solar)), as well as meteorological effects (especially pressure and
wind). Errors inherent in all measurement systems and to stilling wells also
have an influence. A tide level measurement error relative to a theoretical
tide is thus considered as noise in any harmonic analysis of tide.

It is essential to assess the nature of noise to determine the impact of
meteorological conditions and detect the presence of residual periodic con-
stituents, which could be natural or the result of systematic errors caused
by measuring systems. There are clearly only two main causes underlying all
periodic elements of noise, i.e. the omission of a tidal constituent, or the pres-
ence of a cyclical anomaly in the functioning of one or several constituents
of the measuring system (gauge, decoder, transmitter, recorder or power sup-
ply).

The chances are high that noise will have daily, weekly or even seasonal
periods because of the impact of human activities and meteorological con-
ditions on these different instruments. Some of the main factors include
line voltage or air temperature variations on the measuring devices. Spectral
analysis of noise or of a ‘difference tide’ (difference between the measured
tidal height and an approximated theoretical tide) can be a very useful tool to
complete a list of constituents or detect potential instrument malfunctions.

A float gauge malfunction at Brest between 1953 and 1978 is an illustrative
case. The drum drive mechanism was not rotating in a perfectly uniform
manner, which led to a cyclical daily modulation in the tide curve time scale
(same type of graphs as shown in figure 6.6). This defect was revealed by the
appearance of spectral lines at frequencies having valid Doodson numbers.
This type of defect introduces changes in the M2 tidal constituent, generat-
ing angular velocities identical to qM2 ± qS1 , which are allocated Doodson
numbers of 364 555 and 146 554, respectively. However, it was not possible to
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Figure 6.6: Detection of anomalies in flood gauge measurements at Brest (France)
from 1953 to 1978: spectral lines with Doodson numbers of 146 554 and 364 555 were
due to a defect in the drum drive mechanism (daily cyclical variation in the chart paper
speed).

interpret such cyclical variations, especially by the size of the corresponding
amplitudes, or as waves from the tide-generating potential, or as nonlinear
interaction constituents. These calculations also revealed abnormally high
amplitudes at frequencies corresponding to S1 and S3 waves. These latter
results are likely due to the same modulation effects induced by the drum
rotation speed on the S2 constituent.

In the low frequency domain, figure 6.7 gives an especially interesting
illustration of the nature of noise. Without conducting a quantitative esti-
mation, the amplitudes of the harmonic constituents Sa, Ssa and Mf can be
clearly distinguished from the background noise and are significantly high
in this part of the spectrum. All the others, even though they are present in
the tide-generating potential, are mixed with the noise.

Note that, in the development of the tide-generating potential, the
bimonthly constituent Mf has the highest coefficient in this long-period
domain. However, because of their low coefficient in the potential, Sa
(annual) and Ssa (semi-annual) waves appear with unexpected amplitudes.
Their presence is mainly associated with ‘solar radiational’ effects. Note that
seasonal variations, i.e. solar radiation and meteorological conditions (wind
fields and atmospheric pressure), have an impact on the tide level either
directly (pressure) or indirectly (variation in the coastal tide level according
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Figure 6.7: Tide spectrum at Brest in the long period domain: the highly noisy struc-
ture of this spectrum highlights how hard it is to detect tidal harmonic constituents
that are present in this frequency band, especially those corresponding to Msm, Mm
and Msf. Only Sa (annual), Ssa (semiannual) and Mf (bimonthly) waves have signifi-
cant constituents.

to the wind conditions; expansion of the surface water layer). These effects
are generally minor along North Atlantic coasts, but are greater in areas influ-
enced by monsoon conditions. These influences are much more noticeable
in seas with very low amplitude tides, e.g. along the French Mediterranean
coast, the Sa wave is the same magnitude as the M2 wave (around 10 cm).

Sa and Ssa waves have amplitudes that are not constant from year to year
because of the nature of their origins. This is shown by spectral noise in
the vicinity of the corresponding frequencies. Many years of observations
are required to be able to accurately determine their amplitude and mean
phase. These two waves, which correspond to nontrivial tide level variations,
should be taken into account in accurate tidal computations. Note that
they are the dominant solar radiational tide constituents (included in the
theoretical tide definition) and are thus included in the list of harmonic
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VI. Harmonic analysis

constituents like those derived from the tide-generating potential. Of the
other existing and detectable radiational constituents, the mean diurnal
solar constituent S1, which is derived from the action of thermal winds,
stands out particularly, along with the diurnal surface water dilation effect
on the tide level. The main S2 solar semidiurnal wave likely has a very
weak radiational constituent, but it is hard to distinguish from the generally
dominant gravitational part.

Note finally that these radiational waves can involve nonlinear interac-
tions with major gravitational constituents, thus especially inducing annual
M2 wave amplitude modulations. In such cases, this modulation contributes
to the two spectral lines of the angular velocities qM2 ± qSa, to the nearest
angular velocity at solar perigee. These constituents, which are located on
both sides of M2 (sometimes designated as MA2 and MB2), are denoted
M(KS)2 and M(SK)2 by the French Hydrographic Service, with Doodson
numbers of 256 554 and 254 556, respectively. These waves are some of the
constituents whose origins should be clearly defined since they are insepara-
bly linked to tide-generating potential constituents. Modulations in M2 due
to meteorological noise or cyclical measurement errors sometimes seriously
hamper clear determination of the gravitational portion of these interaction
waves.

The mean annual tide level variation pattern reveals another aspect of
noise in the very low frequency domain. Most records of very long dura-
tion T (several decades) show a secular variation trend in the mean annual
level, especially at the Brest (France) site. This trend is reflected in FFT by
spectral constituents corresponding to the frequency 1/T and its harmonics,
whereas FFT provides a consistent representation of the analysed signal over
this interval. However, this is a Fourier series with a built-in assumption that
the T value is the signal period. When this mean level varies linearly over
the measurement time, this trend is reflected by a Fourier series of the ‘saw-
tooth’ function with the measurement interval as period. These constituents
obviously represent artefacts that have to be eliminated prior to performing
the FFT. One technique involves, for instance, correcting the measured tidal
heights by removing the tide level trend. This is generally calculated by apply-
ing a linear regression to the mean annual measured levels.

Another source of noise, which is very problematic since it is often hard to
distinguish from the actual tide, concerns systematic errors due to poor tidal
time and height calibrations, especially for float gauges (Chapter II: part 3.2).

144



4. Analysis by the least-squares method

Time calibration errors are quite easily detected. According to the theoret-
ical tide, which represents a very accurate clock, a temporal representation
can be drawn up which should quite closely match the observed tide. It is
thus possible to correct obvious errors, for instance, on the basis of differ-
ences in daily phases of reduced vectors of both theoretical and measured
tides. Although the technique is perfectly adjusted, it would be unsuitable to
systematically adjust observations according to a theoretical tide for at least
two reasons: firstly, because the theoretical tide is itself established on the
basis of observations and, secondly, because there is a random constituent
that should not be overlooked with respect to tide level variations.

Conversely, tidal height calibration errors are harder to detect. Tide
level variations associated with meteorological conditions (wind and atmo-
spheric pressure) are sometimes substantial, thus masking this type of error
(usually a few centimetres). Studies (which are seldom carried out) based on
correlations between the observed tide level and meteorological conditions
recorded at the site, or between simultaneous measurements obtained at the
monitored site and in a neighbouring port, would be required to detect such
errors.

These sources of noise, which concern the entire measurement system, are
problematic because of their systematic nature. However, random errors
(generally centred) associated with the determination of an individual mea-
surement value usually do not markedly upset the results. For instance, auto-
matically logged measurements are hampered by the problem of noise intro-
duced by measurement digitisation. It was shown (Y. Desnoës, 1977) that the
harmonic constant evaluation inaccuracy resulting from automatic record-
ing was around A/

√
3M, where A denotes the numerical resolution inter-

val and M denotes the sample number. With a minimum of 24 measure-
ments/day, the M value quickly rises to a very high value and the correspond-
ing error becomes negligible.

4 • Analysis by the least-squares method

We have seen that the structure of a frequential filter FT2n (6.21), result-
ing from a second-order approximation of the reduced tidal height, gives
reduced vectors that contain all information relative to each species. Hence,
each k species can be analysed separately on the basis of the series of corre-
sponding reduced vectors. These vectors, as described by equation (6.20),
are generally calculated at regular time intervals tc, but at most 72 h in order
to avoid aliasing. In this part of the chapter, we will deal with just one species
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VI. Harmonic analysis

at a time so as to be able (without any possible confusion) to get rid of each
species’ k index, thus simplifying the equations.

We obtain a limited series of reduced vectors for each species. The har-
monic analysis can then be performed by two main methods, i.e. the least-
squares method which accounts for the presence of noise, or FFT.

Harmonic analysis by the least-squares method mainly involves solving
a system of so-called ‘normal’ equations after conditioning them well to
ensure that the answer will not be indeterminate. The frequencies of con-
stituents of the potential or interaction waves (see Appendix C) are the prob-
lem’s input data, with the unknowns being the respective amplitudes and
phases.

4.1 • System of normal equations

By omitting the k index, the reduced vector given by equation (6.9) can be
formulated for time tm as:

C(tm) =
∑

i

hie
j(V0i−gi)ej2pyitm (6.22)

For a given species, consider the series of reduced vectors calculated every
tc over an interval of T = Mtc, and let:

tm = (m− 1)tc C(tm) = cm

am,i = ej2pyitm xi = hie
j(V0i−gi) (6.23)

Equation (6.22) then becomes:

cm =
∑

i

am,ixi (6.24)

Until now, reduced vector equations have been formulated based on the
assumption that tidal height measurements are perfect. However, tidal
measurements are actually riddled with errors. After eliminating known
systematic errors and periodic terms other than those associated with tide,
the reduced vectors cn, calculated from data corrected in this way, take into
account, besides tidal constituents of the considered species, a random term
that we symbolise by:

b(tm) = bm (6.25)

Based on the above-mentioned preliminary precautions, the noise fea-
tures that we assume are stationary, centred and Gaussian are allocated to
this random term. Although not absolutely necessary, we will simplify the
discussion by considering this to be ‘white noise’– its correlation function is
a Dirac pulse (to the nearest variance factor), i.e. nil for all time errors except
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4. Analysis by the least-squares method

for the zero error where it has the variance value. The hypothesis set out for
this noise is readily acceptable for reduced vectors whose temporal sampling
step tc is much higher than that of the original observations te. This is an
additional advantage in favour of the reduced heights method.

Let M denote the number of reduced vectors cm (n.b. T = Mtc) and
N represent the number of harmonic constituents xi(complex) to compute.
When the noise is taken into account (6.25), we thus have a system of M
equations with N unknowns of the following type:

cm =

(
i=N∑
i=1

am,ixi

)
+ bm (6.26a)

where obviously N < M. The least-squares method involves looking for
a solution that assigns a minimum modulus to the noise. Using a matrix
calculus, let:

C =



c1

.

.

.

.

.

cM


A =



a1,1 · · · a1,N

. . .

. . .

. . .

. . .

. . .

aM,1 · · · aM,N


X =



x1

.

.

.

.

.

xM


B =



b1

.

.

.

.

.

bM


and the system of equations (6.26a) can thus be formulated as:

AX− C = −B (6.26b)

To overcome the problem of minimising the noise, the value of the matrix
product B∗B must be minimised, where the superscript ∗ applied to a matrix
indicates that it is the adjoint matrix, i.e. transposed and conjugate.

With this being the case, the matrix product B∗B is expressed by:

B∗B = (AX− C)∗ (AX− C) = X∗A∗AX−C∗AX−X∗A∗C+C∗C (6.27)

and the noise minimum is thus obtained for:

d
(
B∗B

)
=
(
X∗A∗A− C∗A

)
dX− dX∗

(
A∗AX− A∗C

)
= 0 (6.28)

By noting the equivalence of the following matrices:(
X∗A∗A− C∗A

)
=
(
A∗AX− A∗C

)∗
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VI. Harmonic analysis

we obtain a system of so-called normal equations that minimise the product
B∗B. This system of normal equations is formulated as follows:

A∗AX− A∗C = 0 (6.29)

where X represents the matrix solution of the system of N linear equations
with N unknowns.

Hereafter we will explain the formulation of matrix equation (6.29). The
equation solving problem will not be discussed in detail, but the question of
properly conditioning the system warrants special attention.

4.2 • System conditioning criteria

In system (6.29), we have matrix A (M lines, N columns) of the general
term am,n and its adjoint term A∗ (N lines, M columns) of the general term
a∗m,i. Their product gives matrix A∗A (N lines, N columns) whose general
term (nth line, ith column) is expressed as:

m=M∑
m=1

a∗m,iam,n =

m=M∑
m=1

e−j2p(yi−yn)tm (6.30)

while keeping in mind that we set out am,n = ej2pyntm .
Matrix A∗A is thus Hermitian, i.e. equal to its adjoint matrix

(
A∗A

)∗, and
all terms of its diagonal (yi − yn = 0) have value M.

Hence, where L denotes matrix A∗A normalised by M:

L =
1

M
A∗A (6.31)

this matrix, which is obviously Hermitian, has all the diagonal terms of unit
value. Considering (6.32), its general term ln,i (nth line, ith column) is thus
expressed as:

ln,i =
1

M

m=M∑
m=1

e−j2p(yn−yi)tm (6.32)

We have often seen that a series of reduced vectors represents a series of
complex values every tc. As we already defined tm = (m − 1)tc, equation
(6.32) thus represents the FFT of the normalised rectangular function by its
width T = Mtc for frequency yn − yi. Hence, the term ln,i can be expressed
by:

ln,i = LT,tc(yn − yi) =
LT(yn − yi)

Ltc

(yn − yi) (6.33)
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4. Analysis by the least-squares method

which is the ratio of FFTs of rectangular functions of respective widths T and
tc at frequency yn − yi. This simplification can only be adopted if there are
no errors in the observation data.

Moreover, when F = (1/M)A∗C, the general term of this matrix or vector
(N lines, one column) is expressed by:

1

M

m=M∑
m=1

a∗m,ncm =
1

M

m=M∑
m=1

cme−j2psntm (6.34)

which is the FFT value of the series of reduced vectors cm at frequency sn.
With the elements defined above, the matrix equation (6.31) becomes:

LX = F (6.35a)

which represents the system of N linear equations with N unknowns, with
the general equation expression being:

n=N∑
n=1

li,nxn =
1

M

m=M∑
m=1

cme−j2pyitm (6.35b)

Note that for a given k species, parameters cm, xi and yi respectively
represent:
• the reduced vector at time tm of this species: cm ⇒ Ck(tm)

• the vector (amplitude and phase) of its corresponding constituent i:
xi ⇒ hkie

i(V0ki−gki)

• the error between the frequency of constituent i and the centre fre-
quency of the considered species k/TL : yi ⇒ (qki/2p)− (k/TL).

Within each species k (0, long period; 1, diurnal; 2, semidiurnal; 3, third-
diurnal, etc.), determining the harmonic constants by the least-squares
method thus involves solving the system of linear equations (6.35b), where N
is the number of constituents xi to calculate and M is the number of reduced
vectors cm. Equation system (6.35b) could be better explained by highlight-
ing the Hermitian character of matrix L with lm,i = l

∗

i,m, or:
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x1 + l1,2x2 + · · · + l1,nxn

+ · · · + l1,N−1xN−1 + l1,NxN =
1

M

m=M∑
m=1

cme−j2py1tm

l
∗
1,2x1 + x2 + · · · + l2,nxn

+ · · · + l2,N−1xN−1 + l2,NxN =
1

M

m=M∑
m=1

cme−j2py2tm

l
∗
1,nx1 + l

∗
2,nx2 + · · · + xn

+ · · · + ln,N−1xN−1 + ln,NxN =
1

M

m=M∑
m=1

cme−j2pyntm

. . . . . . . . . . . . . . . . . . . . . . . = · · ·

l
∗
1,N−1x1 + l

∗
2,N−1x2 + · · · + l

∗
n,N−1xn

+ · · · + xN−1 + lN−1,NxN =
1

M

m=M∑
m=1

cme−j2pyN−1tm

l
∗
1,Nx1 + l

∗
2,Nx2 + · · · + l

∗
m,Nxm

+ · · · + l
∗
N−1,NxN−1 + xN =

1

M

m=M∑
m=1

cme−j2pyNtm

In solving this system of equations, note that if two constituents have the
same frequency, this system is completely indeterminate. Errors excepted,
this situation should not arise. However, if two frequencies are closely
adjacent, the situation is close to indeterminacy and the results will not be
very accurate, and the question arises as to whether the system is properly
conditioned.

The graphs (figures 6.1 and 6.2) of the spectrum of function hi(t) =
cos(2pnit), sampled with the same time step but different intervals, pro-
vide an intuitive way to deal with this problem. Let us thus consider two
sinusoidal waves with distinct frequencies (ni 6= nn), sampled over a time
interval T with time step te. These two waves take the respective ‘vectors’
aie

j2pnit and anej2pnnt. In the domain delimited by the Nyquist frequency
(0 < n < nN), the respective spectra of these vectors are represented by
ai
∣∣
LT,te(n− ni)

∣∣ and an
∣∣
LT,te(n− nn)

∣∣, which are continuous functions of
the frequency. When there is a frequency deviation where |ni − nn| is a mul-
tiple of 1/T, the two constituents are clearly separated. The position of the
spectral peak of one of the signals corresponds to a zero position of the other
and vice versa. However, when the error is below the frequency 1/T, the two
main peaks tend to overlap, so it could be hard to differentiate them.
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4. Analysis by the least-squares method

The so-called Rayleigh criterion is often selected to avoid these latter
situations when solving a system of normal equations. For all pairs of
constituents i and n belonging to a given k species (n.b. index k is omitted
here in the subscripts), when applying this criterion, one of the respective
frequency constituents ni and nn (corresponding to frequencies yi and yn
relative to the centre frequency of the considered species) is overlooked, if
they do not fulfil the condition:

|ni − nn| = |yi − yn| >
1

T
(6.36)

This criterion is actually very restrictive since we have seen that the error
|yi − yn| = 1/T corresponds to zero values of spectra

∣∣
LT,tc(y− yi)

∣∣ or∣∣
LT,tc(y− ym)

∣∣. Besides, for errors |y− yi| of around 1/T, we have:∣∣
LT,tc(y− yi)

∣∣ = ∣∣∣∣ sinc [(y− yi)T]

sinc [(y− yi)tc]

∣∣∣∣ ≈ |sinc [(y− yi)T]| (6.37)

since sinc[(y− yi)tc] ≈ 1 when tc = T/M� 1.
When s = (y − yi)T, a frequency normalised by nT = 1/T centred on

yi, we obtain the spectrum of the normalised rectangular function |sinc(s)|.
The Rayleigh criterion then gives |s| = |y− yi|T > 1. Beyond the error
|s| = 1, the value of the first two secondary peaks of the spectrum of this
rectangular function is 0.217; these peaks are reached for |s| ≈ 1.430 (value
of around 1.5 for which |sin ps| = 1).

If we accept the errors |s| > 1, there would be no reason to prohibit
errors below 1 and giving values of |sinc(s)| below the two secondary peaks
at 0.217. Besides, this latter value is also achieved by |sinc(s)| within the
interval (−1,+1) for |s| ≈ 0.813.

The Rayleigh criterion can be tempered by rounding off this latter value
to 0.8. We therefore do not try to solve the system of equations for all pairs
of constituents i and n of each species that does not satisfy the condition:

|yi − yn| = |ni − nn| >
0.8

T
, ou T >

0.8

|1/Ti − 1/Tn|
(6.38)

where T is the duration of the series of reduced vectors, and Ti = 1/ni and
Tn = 1/nn are periods of the two unseparated constituents. When this
condition is fulfilled, there will be a dominant diagonal of at least 80 % and
a system of equations that could be considered as being well conditioned.

Note finally that this criterion is not very stringent. It can be more or less
effectively interpreted depending on the noise level in the analysed frequency
domain. It should still be kept in mind that, where possible, it would be
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VI. Harmonic analysis

best to select observation periods close to multiples of periods of the most
important constituents.

5 • FFT analysis

The series of M reduced vectors of species k can be dealt with directly
via FFT. Let us get back to equation (6.9) for reduced vectors Ck relative
to species k. With each species being treated separately, we can remove
subscript k to simplify the equations. By using the same convention as
previously for defining xi, i.e. xi = hie

j(V0i−gi), it becomes:

C(t) =
∑

i

hie
j(V0i+2pyit−gi) =

∑
i

xie
j2pyit

We will select a time such as t = mtc (note the convention change
with respect to equation 6.23), where tc still represents the time interval for
computation of two consecutive reduced vectors of the same species k, and
with m being the sequence number of samples ranging from 0 to M − 1.
Moreover, where T is the series interval, the time step tc is selected such that
Shannon’s theorem is satisfied and the number M = T/tc is a power of 2.

Applying FFT to a series of M vectors C(mtc) generates M/2 complex
amplitudes corresponding to frequencies n/T with 0 ≤ n < M/2, or:

FT,tc

(n

T

)
=

tc

T

m=M−1∑
m=0

C(mtc)e−j2p
n

T
mtc (6.39)

With the definition of C(mtc), this latter equation becomes:

FT,te

(n

T

)
=

1

M

∑
i

xi

m=M−1∑
m=0

e−j2p[( n
T )−yi)]mtc (6.40a)

Considering that summmations in m, normalised by M, are FFRs of
cyclical functions of angular velocities 2pyi sampled within the range T, we
deduce:

FT,tc(n/T) =
∑

i

xiL
∗
T,tc

(yi − n/T) (6.40b)

where function LT,tc(s) is the Fourier transform (continuous function of
s) of the normalised rectangular function of width T, and sampled every
tc = T/M. This latter equation should be matched with the complete
expression (6.5) of the FFT of h(t) sampled over interval T with a time step
of te.
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6. Separation conditions

Hence, with n values ranging from 0 to M/2 − 1, we obtain a system of
M/2 equations whose unknowns are amplitudes and phases of harmonic
constituents i of species k.

The least-squares method would not be useful for solving this system.
When N is the number of unknowns, i.e. necessarily equal to or below M/2,
in the system of equations that is to be solved for the considered species k, we
will only deal with N equations corresponding to n values such that, for all
constituents i, we have: ∣∣∣yi −

n

T

∣∣∣ <
1

T
(6.41)

This system does, however, have a restriction. If two constituents are
related to the same n value, the system will have two identical lines, which
will lead to indeterminacy. This could be avoided by making sure that all
pairs (yi, yj) of species k satisfy the Rayleigh criterion (6.36), or:∣∣

yi − yj
∣∣ >

1

T
(6.42)

This method is only applicable with a regular series of reduced vectors
calculated with a constant time step tc. It especially cannot be used if the
observation data have errors. The advantage is that an FFT can be applied,
thus substantially reducing the processing time. Note that the separation
criterion is more restrictive than with the least-squares method. However,
this restriction is more technical than fundamental, and programming tools
could be designed to make it possible to apply the same criterion as used for
the least-squares method.

6 • Separation conditions

The impacts of tidal constituent separation conditions should be assessed
before dealing with the overall problem concerning harmonic analysis of
tide. To be able to solve this first aspect of the problem, unseparated con-
stituent phases should be expressed in the form of explicit functions of fun-
damental variables used in the harmonic development of the tide-generating
potential. Note, however, that this is just a tentative procedure meant only to
provide an indication of the orders of magnitude involved.

In the definition of Doodson’s harmonic development (5.7), the astro-
nomical argument Vi (of a tidal constituent i) is expressed as a function of
coefficients to be assigned to fundamental variables and the number of ‘p/2’
to add (or delete) so that Vi will only be present in the form of its cosine in
(5.7), or:
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VI. Harmonic analysis

Vi =

subgroup︷ ︸︸ ︷
group︷ ︸︸ ︷

species︷︸︸︷
mt,it +ms,is +mh,ih +mp,ip+mN,iN+mp1,ip1 +mp/2,i

p

2
(6.43)

Moreover, we have seen that Tables 5.3 and 5.4 give the astronomical
origin and format of the fundamental variables in equation (6.45) as a
function of the decreasing order of respective angular velocities (increasing
order of periods). Table 5.4 also shows the magnitude of these angular
velocities relative to that of the civil lunar hour angle t.

Note that the main elements of these astronomical parameters (notations
� and ML correspond to the hour angle and mean longitude, respectively):

No Parameter origin Symbol Period

1. Civil lunar HA t° = 15(°/h)t(h)
+ h°− s° 24.841 2 hours

1.035 050 days

2. ML of the Moon s 27.321 582 days

3. ML of the Sun h 365.242 199 days

1 year

4. ML of lunar perigee p 8.847 309 years

5. Opposite of ML N′ = −N 18.612 904 years

of the ascending lunar node

6. ML of solar perigee p1 20 940.2 years

209.402 centuries

The difference in magnitudes of these fundamental periods (hours, days,
years, centuries) enables us to draw up a number of rules for separating tidal
constituents.

Concerning harmonic analysis by the least-squares method, the criterion
given by equation (6.40) enables us to set the minimum observation interval
Tmin required to separate two constituents. This interval is:

Tmin = 22 days (rounded value of 27.321 × 0.8 ≈ 21.9) for constituents
belonging to two neighbouring groups, as differentiated by the 2nd digit in
their Doodson number;
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6. Separation conditions

Tmin = 292 days (365.242 × 0.8 ≈ 292.2) when they belong to two
neighbouring groups, as differentiated by the 3rd digit in their Doodson
number;

Tmin = 7 years (8.847 × 0.8 ≈ 7.1), if the constituents only differ by the
4th digit in their Doodson number;

Tmin = 15 years (18.613 × 0.8 ≈ 14.9), for those that only differ by the
5th digit in their Doodson number.

For example, we may examine separation conditions for a few main
waves (see Table 5.1 or Appendix D), with the constituent angular velocities
expressed here in cycles/day (cpd):

Constituents M2 (mean lunar) and N2 (major lunar ellipsoid) have the
following respective arguments VM2 = 2t and VN2 = 2t − s + p, with
an angular velocity error of qM2 − qN2 = 1/27.32 − 1/(8.85 × 365.24), or
1/27.57 cpd; so Tmin = 22 days (27.57×0.8 ≈ 22.05) is required to separate
these two waves;
• For M2 and S2 waves (mean solar: VS2 = 2t+2s−2h), the correspond-

ing error is qS2 − qM2 = 2/27.32 − 2/365.24, or 1/14.16 cpd; a minimum
interval of Tmin = 12 days (14.16 × 0.8 ≈ 11.32) is required for their sepa-
ration;
• For S2 and K2 (lunisolar declinational: VK2 = 2t + 2s), the difference

in angular velocities is qK2 − qS2 = 2/365.2, or 1/182.6 cpd; so a minimum
record of Tmin = 146 days (182.6 × 0.8 ≈ 146.09) is required to separate
them;
• Constituents S2 and T2 (major solar ellipsoid: VT2 = 2t + s + p1)

present, when disregarding the corresponding angular velocity at p1, an
error of qS2 − qT2 ≈ 1/365.24 cpd; a minimum interval of Tmin = 292
days (365.24× 0.8 ≈ 292.19) is required to separate these two elements.

Each subgroup is generally assigned the name of the most important
constituent. A minimum interval of 292 tide monitoring days is required
to separate two neighbouring subgroups.

For separation conditions involving mean longitudes of lunar perigee (p)
and of the ascending node (N′ = −N), it is necessary to assess series
of measurements with a much longer observation interval (several years).
Obviously, this type of observation data series is seldom available. Since
it is essential to have access to very long-term observation data and also
since Darwin’s development was incomplete when the harmonic analysis
method was created, the problem of separating the concerned constituents
is presented in a different setting. This problem was thus not dealt with in
the same way, but for no really fundamentally important reason.

Since separation involving solar perigee (p1) is not common practice,
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we will not say much about these conditions. Constituents that could be
concerned have very low amplitudes. Moreover, the mean longitude of solar
perigee is considered as constant in many applications since it does not vary
markedly.

However, because of some nonlinear interactions, there are constituents
for which the difference in astronomical arguments just involves lunar
parameters p and N, with a value of

∣∣p− 2N
∣∣. This corresponds to an

error of: 1/8.84 − 2/18.61 = 1/176.89 cycles/year – separation of the con-
cerned constituents then requires a minimal interval of Tmin = 142 years
(176.89× 0.8 = 141.5). This is an exceptionally long tide observation inter-
val, but such records are available for the Brest (France) site.

7 • Conditioning the equation system

The system of normal equations must be well conditioned to ensure its
solution, which is an essential condition for application of the least-squares
method for harmonic analysis.

Since poorly separated tidal frequencies introduce major errors in the
resulting solutions, at first only constituents that have the highest coefficients,
and which fulfil the separation criteria for the interval of the available obser-
vation data, are computed. Other constituents that are considered as pertur-
bations are evaluated later.

Take, for instance, a major constituent r that is poorly separated from
its minor neighbour i which is considered as a perturbation of the first
consituent. In terms of the order number, we assume that i = r + 1. In
the complete linear system which is deduced from (6.35b) for each k species,
on line r we obtain:

l
∗
1,rx1 + l

∗
2,rx2 + · · · + xr + lr,ixi

+ · · · + lr,N−1xN−1 + lr,NxN =
1

M

m=M∑
m=1

cme−j2pyrtm

In this form, constituents r and i cannot be separated, so the system is
obviously poorly conditioned. By removing these constituents, it is replaced
by a system where line r becomes:

l
∗
1,rx1 + l

∗
2,rx2 + · · · + x′r

+ · · · + lr,N−1xN−1 + lr,NxN =
1

M

m=M∑
m=1

cme−j2pyrtm (6.44)
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7. Conditioning the equation system

Solving this system will not provide the value of the sought-after unknown
xr but rather that of x′r = xr + lr,ixi, by taking into account the conventions
adopted in (6.23) and equation (6.33) defining coefficients lr,i = l

∗

i,r:

x′r
xr
= 1+

xi

xr
lr,i = 1+

hiej(V0i−gi)

hrej(V0r−gr)
× L

∗
T,tc

(yi − yr) (6.45)

According to the notations used in (6.11a), (6.11b) and (6.8), the astro-
nomical argument Vj(t) at time t for constituent j belonging to species k
(excluded here in the subscripts) has the following vector:

Vj(t) = V0j + qjt = V0j + 2p(k/TL + yj)t = V0j + 2pnjt (6.46)

where nj represents the frequency qj/2p

Recall that LT,tc(yr − yi) = LT,tc(nr − ni) and let tT/2 denote the time
defined by tT/2 = (T− tc)/2, then equation (6.45) may be formulated as:

x′r − xr

xr
=

hi

hr
e−j(gi−gr)

sinc [(ni − nr)T]

sinc [(ni − nr)tc]
ej[Vi(tT/2)−Vr(tT/2)] (6.47)

This example involves only one perturbation, so the equation can be
readily generalised to any number of constituents i that are unseparated from
a major constituent r belonging to a given species k. Then:

x′r − xr

xr
=

∑
i

hi

hr
e−j(gi−gr)

sinc [(ni − nr)T]

sinc [(ni − nr)tc]
ej[Vi(tT/2)−Vr(tT/2)] (6.48)

Hypotheses are required to evaluate the relative perturbation value
expressed by the right side of (6.48), first on the value of the amplitude ratio
hi/hr, and secondly on the phase lag difference (gi − gr).

When no other information is available, the most natural and commonly
accepted hypothesis is that the amplitude ratio hi/hr is equal to the ratio of
the corresponding coefficients Ai/Ar of the tide-generating potential:

hi

hr
=

Ai

Ar
. (6.49)

However, if accurate harmonic constants calculated over a longer period
are available for a neighbouring site, it is best to consider that the amplitude
ratios are equal at both sites.

Concerning hypotheses on the phase lag error (gi−gr), note that the phase
lag represents the lag in a tidal constituent with respect to the corresponding
potential element. As the frequencies are very close, it makes sense to
consider that the corresponding tidal waves have errors, often quite near and,
in practice, considered as nil (gi− gr ≈ 0). However, when frequency errors
are substantial, e.g. when the separation problem concerns constituents
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belonging to different subgroups, it is preferable to consider the phase lag
difference as proportional to the frequency error. This gives:

gi − gr

ni − nr
= Q (6.50)

The Q coefficient is first estimated on the basis of results concerning
directly computed constituents. We sometimes try to enhance the accuracy
via successive approximations. However, it is often the case that there is no
benefit in going beyond the initial estimate as any improvement is hard to
achieve and is often insignificant.

8 • Computation of nodal factors

In Chapter V, because of the effect of the Sun’s attraction on the lunar orbit,
it was noted that – in his development of the tide-generation potential – Dar-
win introduced nodal factors for each constituent that was considered in his
day. For tidal prediction, software is available that uses tables of nodal factors
that have been determined at the mid-point of the year and are considered to
be constant throughout this interval. With current computation tools, this
method is no longer warranted since instantaneous nodal factor data can
now be used.

We will focus specifically on the case of constituents whose Doodson num-
ber differs with respect to the 5th digit. This case is very important because it
concerns the main lunar constituents that undergo cyclical modulation over
a period of 18.61 years (revolution of the ascending lunar node).

Let us now refer to Appendix D and consider, for instance, constituent M2
of the tide-generating potential, whose arguments (angular and literal) are
VM2 = 2t and B ZZZ ZZZ. In the latter, the 7th letter (Z) indicates that the
VM2 value is associated with a cosine (mp/2,M2 = 0). The corresponding
potential coefficient (column PL in Appendix D) is thus assigned a positive
sign (AM2 = 0.908 120). The constituent, which is denoted by m2 in this
appendix, has a literal argument of B ZZZ YZB, so it is very close to M2. The
last letter (B) corresponds to a negative cosine coefficient (mp/2,m2 = 2).
Hence, for this consitutent m2, we have: Vm2 = 2t − N and Am2 =

−0.033 830.
Equation (6.47) has to be applied if the 15 years of observation data

required (18.61 × 0.8 ≈ 14.9) to separate the two constituents M2 and m2
are not available. In such cases, we can adopt the following conventions:
• the phase lags are considered to be equal (gM2 − gm2 ≈ 0) because of

the extremely close frequency values;
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8. Computation of nodal factors

• by expressing the time in days (with T being the duration of the series
of M reduced vectors: T = Mtc), TM/2 denotes the elapsed time between 1st
January 2000 at midday (Greenwich Civil Time) and the half-series time; the
beginning of the series is thus at time TM/2 − T/2.

Moreover, the angular velocity error, calculated in radians/day (rad/d), is:

2p(nm2 − nM2) ≈ −6.28/(18.61× 365.24) ≈ −0.924 · 10−5 rad/d

According to hypothesis (6.51) on the corresponding tidal wave ampli-
tudes, it becomes:

hm2

hM2

=
Am2

AM2

= −
0.033 830

0.908 120
≈ −0.037

Equation (6.48) is then expressed by (n.b. it is the half-error of the angular
velocities that is considered in the sine computations):

x′M2
− xM2

xM2

= −
0.037

M

sin
(
0.462 · 10−3T

)
sin
(
0.462 · 10−3tc

)e−j(4.09+0.924·10−3TM/2) (6.51)

Note that tc is around unity and that the denominator sine can be treated
as its argument, which reveals the product Mtc = T and eliminates the
sampling effect.

If the observation interval is short enough (in practice, a year or less), the
numerator sine can also be treated as its argument, thus giving:

x′M2

xM2

≈ 1− 0.037 · e−j(4.09+0.924·10−3TM/2) = fM2 ejuM2 (6.52)

Parameters fM2 (always positive) and uM2 are what could be called Dar-
win’s ‘nodal corrections’ (see equation 5.1) of tidal wave M2. They corre-
spond to the amplitude factor (fM2 ) and the phase lag (uM2 ) to apply to con-
stituent M2 to account for the presence of wave m2. With this often adopted
approximation, the perturbation is treated as the instantaneous perturba-
tion corresponding to the center observation of the measurement series
(time TM/2). This result is only acceptable for harmonic analyses data with
a sampling duration of a year or less. Beyond this time period, the accuracy
deteriorates and the equation is not applicable.

With current computational tools, this approximation is no longer of
interest, even for short series. In all situations, it is thus preferable to use
the complete formula which gives the mean perturbation throughout the
observation interval.

Conversely, it is preferable to calculate instantaneous nodal factors for
predictions. This may seem obvious, however there are still software pro-
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grammes that use Darwin’s tables for tide table computation, which give
nodal factors corresponding to the mid-point of each year.

9 • Computation of nonlinear interaction waves

The problem concerning the determination of tidal waves, which are the
result of nonlinear interactions, is harder to solve. This difficulty is due to
the fact that there are no corresponding constituents in the tide-generating
potential that could provide support for the amplitude ratio hypothesis.

The following approach is used in this case. Assume that two tidal waves
A and B are respectively perturbed by constituents a and b. Nonlinear
hydraulic interactions generate the AB wave, as well as waves Ab, aB and ab.

Using the same notations as in the previous parts, the relative error (com-
plex value) of the perturbed total constituent xAB with respect to the most
important interaction waves present, e.g. xAB, can be expressed as:

x′AB − xAB

xAB
=

xAb

xAB
+

xBa

xAB
+

xab

xAB
(6.53)

An additional hypothesis is still required to solve the problem. From a
hydrodynamic standpoint, it is generally acknowledged that the amplitudes
of interaction waves are proportional to the amplitudes of the constituents
involved. With the amplitude term, considered here in a broad sense, this
concerns the complex amplitude, i.e. the product of the modulus and
the complex exponent of the phase. Where the symbol ∝ indicates the
proportionality (real or complex), this additional hypothesis enables us to
formulate the four following equations:

xAB =∝ xA· ∝ xB

xAb =∝ xA· ∝ xb

xBa =∝ xB· ∝ xa

xab =∝ xa· ∝ xb

(6.54)

By taking this proportionality into account, we deduce (6.55):

x′AB

xAB
= 1+

xa

xA
+

xb

xB
+

xaxb

xAxB
or even:

x′AB

xAB
=

(
1+

xa

xA

)(
1+

xb

xB

)
(6.55)
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9. Computation of nonlinear interaction waves

This latter equation is very important because it provides a basis for
analysing interaction waves. The correction applied for an interaction con-
stituent is thus the product of the corrections to apply to the interacting con-
stituents. With the same notations as used for the nodal corrections, we
obtain the amplitude factor and phase of the correction to apply, or:

fABejuAB = fAfBej(uA+uB)

Based on the hypotheses put forward, this rule can be applied regardless of
the degree of interactions (double, triple, etc.). It is also used for high-order
harmonics and for interactions wherein the same constituent is involved
several times. We have, for instance:

fM4 ejuM4 = f 2
M2

ej2uM2

fM6 ejuM6 = f 3
M2

ej3uM2

f2MS6 eju2MS6 = f 2
M2

fS2 ej(2uM2+uS2 )

The analysis of available long observation data series enabled us to verify
the accuracy of the results obtained by this procedure. This direct determi-
nation of interaction waves thus a posteriori confirms hypothesis (6.54) on
the proportionality of complex amplitudes.
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VII

Nonharmonic analysis

methods

1 • Introduction

The harmonic tidal equation has prevailed chiefly because of its high
analytical accuracy and the fact that it can deal with any type of tide, except
estuarine tides. It is, however, not very satisfactory because of the substantial
computations that it requires using a high number of harmonic constants, in
addition to the long recording times.

Accuracy is obviously a key asset, but it should still be kept in mind that
tide tables, drawn up on the basis of a small number of parameters, existed
before the harmonic analysis method was developed. One example of this
is the Laplace tidal equation. Before the advent of computers, this Laplace
equation was more accurate for computing tide tables for French coastal
regions than the harmonic tidal equation.

Other procedures are also available and a few examples are discussed in
this chapter. These methods are mainly used when the harmonic analysis
method turns out to be unsuitable, particularly in the following cases:
• For short-term observations, hypotheses on amplitude ratios and phase

lag differences for constituents with close periods are required to be able to
apply the tidal harmonic constituent separation criterion. These hypothe-
ses only partially reflect the actual situation, which means that the accuracy
declines as the observation interval shortens due to the increase in the num-
ber of unseparated constituents. A minimum observation interval equal to
the semi-lunation (approximately 15 days) is required to apply the harmonic
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VII. Nonharmonic analysis methods

analysis method, but the accuracy is not optimal. One year is generally con-
sidered to be a reasonable observation period for an analysis that would
generate accurate enough predictions to meet maritime navigation require-
ments.
• For estuarine tides, a spectral analysis of observed upstream water

heights shows that, because of the proliferation of interaction constituents
beyond the twelfth diurnals, it is impossible to identify individual con-
stituents and to apply the harmonic analysis method.
• For some observations, the recording frequency is unsuitable for appli-

cation of the harmonic analysis method, e.g. tide pole readings around high
and low waters, or tide logs obtained to fulfil special harbour project requests
(channel maintenance and building, buoying, dredging, rock clearing, etc.).

Besides cases where the harmonic analysis method is hard to apply, there
are situations for which the studied parameters, such as tidal constants from
reference stations, can be more readily obtained by other procedures. When
studying a new site, these procedures generally benefit from previous tide
records obtained from a nearby port, or so-called ‘reference station’ which,
for estuaries, is preferably located close to the mouth. Otherwise, we call the
study site the ‘secondary port’.

2 • Concordance method

2.1 • Concordance in high and low waters

The concordance method is based on a common sense rule – an amplitude
and a phase lag at a secondary port correspond to a given amplitude at the
reference station.

The geographical proximity of the two ports is not a prerequisite condi-
tion for applying this method, but both must have the same type of tide. It
is essential to be able to clearly correlate the high water (HW) and low water
(LW) parameters at the reference station with the corresponding HW and
LW parameters at the secondary port. The ages of the tide have an important
role in each port because their difference roughly corresponds to the phase
lag between the two tides and helps to determine the associated extremes.
This is not problematic for strictly diurnal or semidiurnal tides. However,
for highly imbalanced diurnal tides, or mixed tides, the different errors for
the diurnal and semidiurnal constituents can lead to confusion, thus making
this method inapplicable.

The ‘concordance conditions’ can normally be assessed on the basis of
the harmonic constants. These constants are generally not available for
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secondary ports (which is mainly why this method was developed). Direct
and empirical comparison of tide graph data available for a secondary port
with that of the reference station is generally satisfactory. Moreover, the
uncertainty in the results can be estimated by this procedure.

This method thus involves graphically assessing relations between HW
and LW tidal times and heights for the two ports. A few examples are
described below (figures 7.1, 7.2 and 7.3).

The first example concerns a study of concordances between tidal heights
at two quite remotely separated ports (Brest and Le Havre, which are located
several hundreds of kilometres apart along the French coasts). Tides at
both sites are semidiurnal, whereas there are many nonlinear interactions at
Le Havre (secondary port, spectrum in figure 6.3) but not at Brest (reference
station).

On the first graph (figure 7.1), the x-axis for each dot represents a HW or
LW height at the reference station, while the y-axis represents the associated
HW or LW height for the secondary port. Each intersection gives the cen-
troid of dots calculated at height intervals (for the reference station) selected
by the operator. The dot distribution around these centroids enables esti-
mation of confidence levels for HW or LW heights at the secondary port
as a function of the corresponding elements at the main port. The statis-
tical parameters can be obtained by a routine computation procedure, but
it is often just as efficient to estimate them directly on the graph. Indeed,
some tidal observation anomalies may not be revealed by automated com-
putations. These anomalies are hard to detect without visual inspection of
the graph. This concordance in tidal heights is very easy to implement: for
each HW or LW height at the reference station there is a better correspond-
ing HW or LW height at the secondary port. Moreover, this type of graph is
useful for correlating mean spring and neap tide HW or LW heights at the
reference station with the corresponding levels at the secondary port.

This concordance should facilitate tidal predictions at a secondary port
on the basis of heights at the reference station. It would thus be relevant to
ask whether the concordance method could be performed via predictions
rather than on the basis of observations at the reference station. The answer
to this question should account for the need to minimize meteorological
noise, which is partially responsible for the uncertainty in the concordance
results. This noise has an impact especially in the low frequency range,
mainly leading to variations in the daily mean tidal level.

The treatment will differ depending on whether the ports are located close
to each other or far apart, and operators mainly make common sense choices.
For two ports that are sufficiently close together, the meteorological effects
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Figure 7.1: Concordance in tidal heights (cm). The x-axis represents the HW or LW
heights at the reference station (Brest) in 2001, while the corresponding heights at the
secondary port (Le Havre) are given on the y-axis. The standard heights at Brest enable
determination of the corresponding values at Le Havre (red lines).

could be considered as identical. In such cases, raw observation data can be
used. Otherwise, it is better to prefilter the dataset to eliminate low frequency
data. The following operations can be performed on the observations logged
at each port:
• Calculating the series of daily mean levels focused on each observed

height (see 4.1);
• Calculating the mean level over the measurement time at the secondary

port (the mean level at the reference port is already known);
• Correcting each observed height by the difference between the mean

level over the measurement time and the daily mean level corresponding to
this observation;
• Plotting a graph of concordances in tidal heights (HW and LW).
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When simultaneous observations are not available (e.g. due to reference
tide-gauge breakdown), the HW and LW heights predicted for the refer-
ence station can still be used, while making sure to eliminate long-period
constituents (mainly Sa and Ssa). This precautionary measure is essential
because measurements at the secondary port are obtained over a relatively
short interval (but still over a minimum of 15 days), and they should be pre-
filtered to eliminate low frequency constituents (mainly Sa and Ssa). In this
case, the concordance method is unable to predict long-period constituents.
These constituents can nevertheless be introduced later by simply appropri-
ating those of the reference station when the secondary port is located nearby.
Otherwise this gap must be taken into account when estimating the uncer-
tainty in the measurement data.

Note that this procedure, which involves using a reference station predic-
tion, should not be applied in the following situations:
• Reference station observations are unavailable;
• Simultaneous observations are available, but the variations in the two

series of daily mean levels are not correlated.
Where possible, to obtain the best estimate of the mean level at a sec-

ondary port (over the sampling time) when the two ports are located quite
close together, it is best to compute the concordances on the basis of obser-
vations recorded at the two ports, while potentially filtering out long-period
constituents of the reference station.

2.2 • Concordance by time for semidiurnal tide cycles

Under a semidiurnal tide cycle, spring tide (ST) and neap tide (NT) high
and low waters always occur around the same time. This property is utilized
in the concordance by time method.

Concordances by HW and LW times at Brest and Le Havre ports, over the
same observation period as that considered to establish the concordances in
tidal heights (figure 7.1), are represented by scatter plots in figures 7.2 (HW)
and 7.3 (LW).

In this type of graph, the x-axis for each dot has a reference station HW or
LW time value within the 0 h to 12 h range, while the time difference between
associated extremes is represented on the y-axis. As previously, the centroids
of dots obtained in predefined intervals are represented by plus signs.
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Figure 7.2: Concordances in low water times (Brest and Le Havre).
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Figure 7.3: Concordances in high water times (Brest and Le Havre).
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2. Concordance method

Note that here the dot dispersion is greater than for tidal heights. This
dispersion is partially associated with the fact that a visual reading at an
extreme time is always tainted by error on an experimental curve (more or
less long slack water duration), while an extreme height reading is easier to
establish. The dispersion remains substantial even when this cause of error
is taken into account. Moreover, there is no simple relationship between the
HW or LW hours at the reference station and the corresponding errors with
respect to the reference station.

For spring and neap tide HW or LW times at a reference station, this repre-
sentation has the advantage of facilitating determination of the correspond-
ing errors for the secondary port. These are indicated by dots at the intersec-
tions of red lines on the graphs. Such treatments generate tide table indica-
tors for all ports linked with a reference station. This method enables HW
and LW predictions for secondary ports on the basis of predictions of the
corresponding elements in main ports. No rules of thumb apply for interme-
diate times other than those corresponding to ST and NT. For want of more
percise indications, the ST or NT error should be used if it is under 2 h, while
using the mean when the error is greater.

2.3 • Concordance by time for other types of tide

A phase lag cannot be associated with a reference station HW or LW
time when the tidal cycle is not completely semidiurnal. For application
of the concordance method, the ratios between HW or LW heights at the
reference station and the corresponding extremes at the secondary port
must be clearly determined. When the ratio between extremes at the two
ports can be established, it is then possible (sometimes through a graphic
representation) to associate the corresponding time errors with these heights.
For tables of tide corrections, in most cases the HW and LW time errors for
the secondary port are only indicated without taking the tidal heights into
account.

2.4 • Tide curve

So far the concordance method has only been applied to HW and LW
heights and times. If tidal data acquired at faster rates are available, other
concordance-related analytical treatments can be applied to encompass all
dots on a secondary port tide curve.

Standard curves* can thus be plotted when, for instance, hourly records
are available for the secondary port. On a graph, this involves plotting a
line whose y-axis is a reference station HW (or LW) height. On this line,
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VII. Nonharmonic analysis methods

at an hourly interval, dots are plotted whose x-axes are secondary port tidal
heights relative to the corresponding reference station extremes (HW or LW).
For a semidiurnal tide cycle, these dots are thus distributed between −6 h
and+6 h around the associated extreme at the secondary port.

This procedure may only be applied if a sufficient number of tidal mea-
surements are available to ensure relatively accurate predictions. In this
case, however, better results can be obtained by plotting standard tide curves
using harmonic constants.

3 • Response method

In the harmonic analysis of tide, only the tidal line spectrum, i.e. a
distribution of constituents with known and clearly determined frequencies,
is sought. All other parts of the signal associated with the action of other
meteorological or oceanographic phenomena have a continuous spectrum,
which is disregarded.

The so-called response method developed by Munk and Cartwright
(1965) involves an analysis of the tide level overall. Here the tide height h(t)
is treated as a signal representing the response of the sea surface (excluding
swells and waves) to an excitation function U(t) which accounts for all phys-
ical factors that could impact the tide level (tide-generating potential, solar
radiation, atmospheric pressure, wind, etc.).

Due to the nonlinearity of the response to the excitation function, the tide
height h(t) is reflected by a series of convolution integrals of the following
type:

h(t) =
n=N∑
n=1

∫
t1

. . .

∫
tn

wn(t1, . . . , tn)U(t − t1) . . .

× U(t − tn)dt1 . . . dtn (7.1)

wn are characteristic functions of the considered point and are relatively
small in number in comparison to analyses using the harmonic method. The
first w1(t) ∗ U(t) term of this equation corresponds to the linear part of the
response, while the others account for the nonlinear aspects.

In signal theory, the w1(t) term represents the pulsed response of a linear
system. Its Fourier transform a1(n) may be called the system transfer func-
tion, or admittance (complex):

a1(n) =

∫
w1(t)e−j2pntdt
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4. Species concordance method

By extension, the admittances an are defined by:

an(n1, · · · , nn) =

∫
t1

· · ·

∫
tn

wn(t1, · · · , tn)e−j2pn1t1 · · ·

× e−j2pnntn dt1 · · · dtn

The admittance concept thus provides a new approach for tidal predic-
tion. Summation of a high number of constituents via application of the har-
monic method is replaced here by application of a response function that
links the cause (i.e. tide-generating potential, radiational potential, vari-
ous meteorological-oceanographic actions) with the effect (tidal height vari-
ations).

The response function is computed from the admittances. Munk and
Cartwright (1965) showed that the response method can account for radi-
ational effects and the results are generally better than can be obtained with
the harmonic method. However, this is only possible when the nonlinear
effects are minor and substantial computation is necessary, thus neutraliz-
ing the slight improvement achieved by applying this method.

The response method has never been used for tide table computa-
tion. However, the admittance concept, whose physical significance is fully
accounted for in signal processing, is still favoured by some specialists.

Finally, it should be noted that this method is a generalization of the
Laplace method. From a formal standpoint, results obtained by the Laplace
method are similar to the linear approximations applied to the first three
species (k = 0, 1 and 2). This prompted us to assess the widely used species
concordance method.

4 • Species concordance method

The Munk and Cartwright method is hampered mainly by the fact that it
attempts to deal with the entire tidal spectrum. Many operations thus have
to be performed, which soon becomes impossible, especially with respect
to overcoming the problem of nonlinear interactions. This concept is still
quite interesting though, since it involves assessing cause-effect relationships,
with the possibility of characterizing a site according to a small number of
parameters, i.e. much smaller than required for harmonic analysis.

As already mentioned, in this sense the method resembles the Laplace
method, which involves determining the species transfer function relating
the tide-generating potential with the tidal height. The fact that Laplace
restricted application of his equation to three species, each representing a
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VII. Nonharmonic analysis methods

narrow frequency domain, explains why it is efficient for tide prediction at
the port of Brest (France). The Laplace equation was thus found to generate
good results with minimal computation resources. It cannot, however, be
applied under all conditions because the transfer function characterizes
linear systems, so no interaction constituents are involved.

The species concordance method takes up the idea underlying the
response method, beginning with the same fundamental equation (7.1) in
the form of multiple convolution integrals. However, its efficiency, i.e. it per-
forms better for computing multiple convolutions, is due to the fact that it
deals only with narrow frequency bands containing all of the tidal energy.
This procedure is actually not restrictive since these are the only frequency
bands useful for prediction. The remaining frequency domain just contains
noise which, by definition, is unpredictable.

Another essential difference with respect to the response method is the
choice of input function. Munk and Cartwright very logically selected the
tide-generating force in order to be able to come up with general equations.
However, this choice is also a source of difficulty because the complexity of
the ocean’s response to the excitation of the force is reflected in the response
function. It would thus be more suitable to select an input function that is as
close as possible to the response.

Based on these choices, the species concordance method turns out to be
effective for dealing with estuarine tides. This procedure is currently being
used to compute tide tables for the Gironde River estuary (France), from the
mouth at Verdon to Bordeaux, 90 km upstream (see figure 1.8).

4.1 • Species concordance: formulation of the method

This method was designed especially for estuarine tide prediction since
the harmonic analysis method is not able to predict such tides correctly.

The basic concept is based on two features:
• The tide at the estuary mouth is not very deformed and can be readily

predicted with the harmonic method;
• There is a relation between the estuary mouth tide and the upstream

tide.
Therefore let:
• hR(t) denote the tidal height observed at time t at a reference station (R)

located close to the mouth;
• and hS (t) denote the level observed at the same time at a specific

upstream site which we call the ‘secondary port’ (S).
Apart from other external contributions (fluvial or atmospheric), the

most general relation between these two tides is given by a multiple convolu-
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4. Species concordance method

tion equation similar to (7.1), where U(t) is replaced by hR(t):

hS(t) =
n=N∑
n=1

∫
t1

. . .

∫
tn

wn(t1, . . . , tn)hR(t − t1) . . .

× hR(n = t − tn) dt1 . . . dtn

Let us use the approach that gave rise to the reduced heights method. We
have seen that the results obtained were very effective for harmonic analysis.
This procedure is based mainly on the following points:
• Because of the equivalence of the spectral and temporal signal distribu-

tions, focusing only on narrow tidal frequency bands makes it possible to
consider only a small quantity of temporal data;
• Moreover, by dealing with species separately, the global problem which

is hard to completely solve can be transformed into several much simpler
computations.

The concept of reduced vectors of species k at time t was defined in
Chapter VI by equation (6.10) as follows:

h(t) =
1

2

∑
k

[
Ck(t)ej2p

k
TL

t
+ C∗k(t)e−j2p

k
TL

t
]

where TL is the lunar day duration. Constituents of the same k species
(long periods, diurnal, semidiurnal, etc.) are all represented by the complex
expression vector Ck(t) whose modulus and phase vary slowly over time.

Let Rk(t) and Sk(t) denote reduced vectors of k species at time t at the
reference station (R) and secondary port (S), respectively. In case of an
estuarine tide, if max kR + 1 is the number of species detected by the
harmonic method at the reference station located at the estuary mouth, the
max kS + 1 number at the secondary port is still much higher (max kS >

max kR). For instance, around 12 species are present in the tidal spectrum
at Verdon (Gironde River mouth), but a threefold higher number of species
were detected at Bordeaux (90 km upstream).

The multiple convolution formulation in terms of reduced vectors and the
identification (term by term) of coefficients relative to exponents (complex)
leads us to an equation that gives us Sk(t). This relation represents the sum
of the following elements that are classified according to the number m of
reduced vectors Rni(t) which interact, such that:

i=m∑
i=1

ni = k (7.2)

So the terms of this sum representing Sk(t) are:
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VII. Nonharmonic analysis methods

m = 1: a single reduced vector (n1 = k; no interaction: m− 1 = 0):∫
w1(t)Rk(t − t)e−j2p

kt

TL dt

m = 2: all pairs such that n1 + n2 = k (single interaction):∑
n1+n2=k

∫∫
t1t2

w2(t1, t2)Rn1(t − t1)Rn2(t − t2)e−j2p
n1t1+n2t2

TL dt1dt2

m = 3: all double interactions such that n1 + n2 + n3 = k:∑
n1+n2+n3=k

∫∫∫
w3(t1, t2, t3)Rn1(t − t1)

× Rn2(t − t2)Rn3(t − t3)e−j2p

n1t1+n2t2+n3t3
TL dt1dt2dt3

The series continues by taking all possible interactions into account. The
reduced vector Sk(t) of the secondary port can then be expressed in a more
compact form by:

Sk (t) =
M∑

m=1

∑
Sni=k

∫
−→
t

[
m∏

i=1

Rni (t − ti)

]
wm(−→t )e−j2p

−→n −→t
TL d−→t (7.3)

In this equation (7.3), note that the m parameter represents the number
of interacting reduced vectors Rni(t), with the sum of ni indices satisfying
equation (7.2).

Moreover, when KR =
{
−max kR, . . . , 0, . . . , max kR

}
denotes all rela-

tive integers (corresponding to positive or negative centre frequencies of ref-
erence station species), for all ni, we have: ni ∈ KR.

The reduced vectors Sk(t) are computed for all k ∈
[
0, max kS

]
. Hence,

to obtain all interactions of all groups of m vectors Rni(t), we calculate
the sum of all possible products of m reduced vectors of the main port
whose ni indices fulfill the conditions of equation (7.2). Finally, for each
set {ni} satisfying these latter conditions, the −→n and −→t vectors are defined
by the following respective constituents: −→n ⇒ (n1, . . . , nm) and −→t ⇒
(t1, . . . , tm).

4.2 • Species concordance: simplifying hypotheses

These equations formulated for computation of reduced vectors Sk(t)
at the secondary port cannot be used without applying some simplifying
hypotheses.

A first hypothesis, which was called the ‘credo of smoothness’ by the
authors of the response method, assumes that the relationship between
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the tide at the reference station and that at the secondary port is a slowly
varying function of the frequency. It thus involves highly accurate wm pulse
functions. For a reduced pulse at a complex constant (constant amplitude
and phase), we obtain a Dirac pulse d(t − di,m) weighted by a complex
constant coefficient. dim represent the signal lag times (reduced S vector)
for the different causes (all reduced R vectors). Due to the slow variation in
the reduced vectors, the Rni(t − ti,m) vectors can be considered as constant
in the definition range of pulse responses wm(. . . , ti,m, . . . ). These vectors
can thus be derived from convolution integrals.

For the reduced vector of the k species at the secondary port S, we obtain:

Sk (t) =
M∑

m=1

Qm,k

∑
Sni=k

m∏
i=1

Rni

(
t − dim

)
(7.4)

with:

Qm,k =

∫
−→
t

wm(−→t )e−j2p

−→n −→t
TL d−→t

Now the second simplifying hypothesis is based on the physical signifi-
cance of the lag times dim. These could be considered as propagation times
of the different waves. Wave propagation is actually dispersive in estuaries,
and the apparent propagation velocity is frequency dependent. However,
accurate dim values are unnecessary because of the slowly varying reduced
vectors. It is generally admitted that they are all equal to a constant lag dRS,
for a pair of ports (R, S), and are evaluated by averaging the approximate
propagation times of tidal extremes between ports R and S. A comparison
of measurements and predictions for S, based on Rni(t − dRS), shows that
an accurate value of this duration dRS is unnecessary, thus confirming the
relevance of this second hypothesis.

On the basis of these two hypotheses, the final expression of the reduced
vector Sk(t) of species k at the secondary port at time t can be formulated as
follows:

Sk (t) =
M∑

m=1

Qm,k

∑
Sni=k

i=m∏
i=1

Rni

(
t − dRS

)
(7.5)

First, computation of reduced vectors derived from measurements at the
two ports generates a system of equations that can be used to determine the
Qm,k coefficients by the least squares method.

Once calculated, these Qm,k coefficients can be applied to more accurately
determine the reduced vectors Sk(t) for the secondary port so as to come
up with the requisite predictions. Recall that the underlying hypothesis of
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VII. Nonharmonic analysis methods

this species concordance method is based on the possibility of having a very
good tidal prediction for the reference station, and thus of computing the
reduced vectors Rni(t − dRS) involved in equation (7.5).

This method enables the use of additional input data so as to be able to
take, for instance, the stream discharge D0(t), which here is considered as a
long-period constituent (k = 0), into account.

4.3 • Species concordance: applications

We will now examine the two main applications of this method by the
French Hydrographic Service, i.e. for estuarine tidal prediction and process-
ing short-term observations in the vicinity of sounding areas.

In order to make the Qm,k coefficients adimensional in such applications,
the reduced vectors (of the parameters taken into account: tidal height,
stream discharge, etc.) are related to their mean modulus over the total sam-
pling time (operator |x(t)|T) considered. The following correspondences are
used to simplify the equations:

Sk ⇒ Sk(t)/|Sk(t)|T
Rn ⇒ Rn(t − dRS)/|Rn(t)|T
D0 ⇒ D0(t)/|D0(t)|T

The reduced vectors at the secondary port are calculated for time t and
those at the reference station for time t − dRS, while dRS is the tide propaga-
tion time from the reference station R to the secondary port S. An accurate
value is generally not required and an error of around 1 h does not lead to
marked variations in the results.

4.3.1 • Estuarine tides

The following examples only apply to semidiurnal tides. The maximum
number M of interacting reduced vectors Rn is obtained through a spectral
analysis at the secondary port.

Let us consider the case of the Seine River (France). The port of Le
Havre is the reference station and Rouen is the secondary port where tidal
consituents are detectable up to the 36th diurnals. The formulation therefore
must include interactions up to the 18th order for R2.

In the following equations, note that the subscript allocated to all reduced
vectors represents the number of the considered species. For the Qm,k
coefficient, the first subscript represents the number of interacting vectors,
while the second is equal to the value of the k species of the Sk vector to
be computed. Note also that each interaction of the reduced vector R2 with
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its conjugate R∗2 introduces a contribution proportional to R∗2R2 of the zero
species (k = 0).

It thus becomes:

S0 = Q0,0R0 + Q(D)
1,0 D0 +

9∑
m=1

Q2m,0|R2|
2m

S1 =

[
Q0,1 + Q2,1|R2|

2

]
R1

S2 =

[
Q1,2R0R2 +

(
Q(D)

1,2 D0 +

9∑
m=1

Q2m+1,2 |R2|
2m

)]
R2

S3 =

[
Q0,3 + Q2,3|R2|

2

]
R3

S2n =

[
Q(D)

1,2nD0 +

9∑
m=0

Q2m+n,2n|R2|
2m

]
Rn

2 (n > 1)

In this Seine River example, only first-order river discharge D0 interac-
tions apply to the reduced vectors Rn

2 , whereas third-order discharge interac-
tions have to be taken into account when using this method to assess tides
propagating up the Loire River.

Many coefficients that are often hard to determine must be calculated
when applying this method upstream of the estuary. The complete equation
should not be used when the higher order terms are not very accurate.

All possible situations should be taken into account to obtain good ana-
lytical results. The observational data to be analysed should include all
amplitude domains associated with the different discharge values. Obser-
vations that include extreme discharge values (flooding and minimum flow)
are especially interesting. In practice, at least 1 year of measurements (tide
and discharge) are required, but a sampling period of several years would be
better.

4.3.2 • Analysis of series of short-term measurements

For open sea observations in the vicinity of coasts or estuaries, harmonic
constituents are seldom detected beyond the 10th diurnals. The formulation
is thus simplified and tailored to the type of tide.

The development presented hereafter on the basis of equation (7.5) is used
for semidiurnal tides. It is largely based on experience. Only vectors whose
interactions involve known constituents are taken into account. Amongst
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all of the potential reference stations near the study site (S), the one that
has constituents that will enable the best tidal prediction is selected. The
river discharge is no longer involved in this application. It is, however, still
possible to modify the equations to account for meteorological parameters,
e.g. wind and atmospheric pressure. Note that the normalized reduced
vectors Sk and Rn are considered at times t and t − dRS, respectively, with
the dRS term being the tide propagation time from R to S. For a semidiurnal
tide, this gives:

S0 = Q0,0 + Q1,0R0 + Q2,0R∗2R2,

S1 = Q1,1R1 + Q2,1R2R∗1 + Q3,1R∗2R2R1

S2 = Q1,2R2 + Q2,2R0R2 + Q3,2R∗2R2
2

S3 = Q1,3R3 + Q2,3R2R1 + Q3,3R∗2R2R3

S4 = Q1,4R4 + Q2,4R2
2 + Q4,4R∗2R3

2

S6 = Q1,6R6 + Q2,6R2R4 + Q3,6R3
2 + Q5,6R∗2R4

2

S8 = Q1,8R8 + Q2,8R2
4 + Q4,8R4

2 + Q6,8R∗2R5
2

S10 = Q1,10R10 + Q2,10R4R6 + Q5,10R5
2 + Q7,10R∗2R6

2

(7.6)

This method has turned out to be especially efficient for handling mesure-
ments spanning a period of around a month. It is routinely used by the
French Hydrographic Service to deal with observations sampled around
hydrographic sounding areas. Note, however, that there is an operational
constraint to this usage, i.e. this method should not be applied when there is
a diurnal or semidiurnal amphidromic point located nearby, since they are
incompatible with the credo of smoothness.

Concerning predictions at the secondary port, we have seen that appli-
cation of this method requires accurate preliminary knowledge of the har-
monic constants at the reference station. The reduced vectors Rn(t) can be
determined via these elements.

Based on measurements obtained at site S, the reduced vectors are deter-
mined from the observed heights (see Chapter VI). The equations (7.6) for-
mulated above can first be used to calculate the Qm,k coefficients (adimen-
sional) by the least squares method. The Qm,k coefficients obtained in this
way are reinstated in their respective dimensions (new Qm,k coefficients have
L−(m−1) dimensions, i.e. inverse powers of the length). The same equations
(7.6) are used again to calculate the reduced vectors Sk(t) directly for the sec-
ondary port on the basis of those of the main port Rn(t− dRS). As each step
is reversible, it is now possible to draw up predictions for the study site.
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The reduced tidal heights at site S are calculated using an inverse FFT from
Sk(t). Note that the TFR efficiency is maximal when the number of M values
is a power of 2. Usually M = 27

= 128 values per lunar day TL = 24.8412 h
are selected, which gives a computation time step of tc = 11.64 min.

At the secondary port, the tidal height at time t = mtc, reduced at time to
(see Chapter VI, equation (6.22), is expressed as:

H(to, mtc) = S0(to)+
1

2

k=M/2−1∑
k=1

[
Sk(to)ej2p

k
TL

mtc
+ Sk(to)e−j2p

k
TL

mtc

]
The predicted heights are finally obtained by parabolic interpolation

(7.7):

h(mtc) = H(to, mtc)

+
to −mtc

2TL
[H(to + TL, mtc)−H(to − TL, mtc)]

+
(to −mtc)

2

2T2
L

[H(to + TL, mtc)]

+ [H(to − TL, mtc)− 2H(to, mtc)] (7.7)

We thus obtain 128 predicted tidal heights per lunar day, i.e. a height every
11.64 min, which means that tidal heights for a given hour can readily be
obtained by interpolation, along with HW and LW hours and heights.

This procedure is used for harmonic constant based predictions. It is very
efficient because the harmonic constant contribution is only calculated once
per lunar day (at times to and to±TL), rather than 128 times if the same result
were sought simply by application of the harmonic method.

Note finally that the Qm,k coefficients (reinstated in their actual dimen-
sion) can be used to compute harmonic constants of the secondary port.
This is obviously interesting for Q1,k coefficients that are related to the lin-
ear correspondence between the same tidal waves at the two ports.

We present a simple example to illustrate how it is possible to utilize other
Qm,k coefficients. Let us consider a case in which the MS4 constituent is to
be determined for the secondary site S. The Q2,4 coefficient can be used to
compute the contribution of the semidiurnal constituents (lunisolar) of the
main port at the quarter-diurnal constituent of the study site.

Where the pair (hi, gi) denotes the harmonic constants (amplitude and
phase lag) of wave i at the reference station and (hS

j , gS
j ) denotes those of wave

j at the secondary port, the MS4 constituent in the latter port is determined
by the following equation:

hS
MS4

e−jgS
MS4 = Q1,4hMS4 e−jgMS4 + Q2,4hM2 e−jgM2 hS2 e−jgS2
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VII. Nonharmonic analysis methods

All harmonic constants for the secondary port can be readily calculated
when the Qm,k coefficients and harmonic constants for the reference station
are known.
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VIII

Characteristic values

and tidal constituents

In addition to tidal height predictions, harbour users often require infor-
mation on other basic characteristics for specific applications. These char-
acteristics used to be conventionally computed with data collected by very
simple means. Nowadays, thanks to our greater understanding of harmonic
constants and their use, these characteristic parameters can be determined
with greater accuracy.

We have seen in Chapter V that the main semidiurnal (M2, S2, N2 and K2)
and diurnal (K1, O1, P1 and Q1) harmonic constituents encompass most of
the tidal signal (80-90 %). The fundamental tidal characteristics sought for a
given port can be quite accurately determined simply by taking these waves
into account.

1 • Study of tidal characteristics of a port

1.1 • Main semidiurnal tidal characteristics

Table 8.1 gives the characteristics of the main semidiurnal tidal con-
stituents. The tide-generating potential coefficients are presented relative to
the highest one, i.e. that of the mean lunar constituent M2.

The cosine arguments of the harmonic tidal equation are given. For
clarity, we used the absolute phase lags ki for each constituent i, which are
conventionally expressed in degrees whereas the times t are always expressed
in hours. Note that the local civil time t (in hours) is implemented when
absolute phase lags are used.

181



VIII. Characteristic values and tidal constituents
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1. Study of tidal characteristics of a port

Parameters h, s and p are conventional notations for mean longitude (in
angular degrees, unless indicated otherwise) of the Sun, Moon and lunar
perigee, respectively, with the mean lunar time expressed in degrees by the
equation: t° = 15°/hth

+ h° − s°. The angular velocities of these different
parameters are as follows:

dt/dt = qM2/2 ≈ 14.492°/h

ds/dt ≈ 0.549°/h

dh/dt = qSa ≈ 0.041°/h

dp/dt ≈ 0.004°/h

where qi is the angular velocity (expressed here in °/h) of constituent i. For
semidiurnal tides, we will thus define a number of characteristics, particu-
larly the mean establishment, age of tide, establishment of the port (which
should not be mistaken for the mean establishment) and equinoctial spring
tide.

1.1.1 • Mean semidiurnal tide: mean establishment

Tidal potential coefficients have a hierarchical arrangement reflected
in the amplitude range of tidal constituents, except in the vicinity of
amphidromic points. The functional traits of semidiurnal tides are thus
dictated by the M2 wave, which generally has a dominant amplitude. This
tidal wave is generated by the mean Moon which, as noted earlier, is the fic-
tional celestial body having a circular orbit on the equatorial plane at con-
stant velocity, while the radius and period are the mean distance and orbital
period of the true Moon, respectively. Its contribution to the total tide is:

hM2(t) = hM2 cos(2t− kM2) (8.1)

which can also be expressed by:

hM2(t) = hM2 cos
[
30t + 2(h− s)− kM2

]
According to the civil lunar hour angle definition, transits of the mean

Moon over the upper and lower branches of the meridian of the place
correspond to t values that are multiples of 180°, or t = 180°k where
k is the relative integer. Equation (8.1) gives the maximum M2 wave for
t = (kM2/2) + 180°k, i.e. with a lag, or so-called mean establishment
(symbolized by Em and equal to kM2/qM2 ), after the Moon’s meridian transit.
When taking the qM2 value into account, we obtain the mean establishment
(in hours) by:

Em = kM2/28.984 hours (8.2)
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VIII. Characteristic values and tidal constituents

Note that only the M2 constituent is involved in the mean establishment
Em. However, since this wave is dominant, the Em parameter is quite
representative of the lag of the true semidurnal high water with respect to
the Moon’s meridian transit (upper or lower branches). This very practical
lag concept was developed much before the harmonic method – here it is
presented as a ramification of this method.

1.1.2 • Semidiurnal spring tide, age of tide, establishment of the port

The mean solar constituent S2, like the mean lunar constituent M2, repre-
sents the tide generated by the mean Sun, i.e. a fictional celestial body with
a circular orbit on the equatorial plane at constant velocity, but at the mean
distance and with the same orbital period as the true Sun.

Its contribution to the total tide is:

hS2(t) = hS2 cos(30t − kS2) (8.3)

The Sun transits over the upper branch of the meridian of a place at noon
(t = 12 h) and over the lower meridian at midnight (t = 0). The high water
of this wave of amplitude hS2 follows these transits of kS2/30 h. Hence, the
two daily high waters of the S2 wave occur daily at kS2/30 and kS2/30 + 12
local times, while the low waters occur at kS2/30 + 6 and kS2/30 + 18 local
times. As the amplitude of the S2 wave is substantially lower than that of
the M2 wave, its action can be interpreted as a modulaton of the mean lunar
constituent. Their superposition peaks when they are in phase, i.e. when:

30t + 2(h− s)− kM2 = 30t − kS2 (modulo 360°)

which gives:

s− h =
kS2 − kM2

2
(modulo 180°) (8.4)

The mean longitude difference of the Moon and Sun that verify equation
(8.4) define the semidiurnal spring tides. Moreover, when s = h (modulo
180°), the Sun and Moon are located on the same meridian plane. These
times are called syzygies and correspond to full Moons (opposition) and
new Moons (conjuction). Spring tides thus follow syzygies with a T2 lag,
which is called the age of semidiurnal tide. When considering the fact that
2d(s− h)/dt = 1.016, the age of semidiurnal tide can be expressed in hours
as follows:

T2 ≈
kS2 − kM2

1.016
hours
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Semidiurnal neap tides occur when M2 and S2 are in opposition,
i.e. when:

s− h =
kS2 − kM2

2
+ 90° (modulo 180°)

Neap tides are at quadrature (first and last quarters) with the same T2 lag.
Spring and neap tides thus successively occur at regular intervals of:

180

d(s− h)/dt
=

180

0.508
= 354.37 hours⇒ 14.77 days

Establishment of the port is, by definition, the high water time on days of
full and new Moons (syzygy). This time is computed in local true times and
is extended to the high water following true noon, i.e. the evening high water.
Depending on whether syzygy takes place at 0 h in the morning or at 24 h in
the evening, the high water time differs with respect to the mean value. We
thus define the establishment of a syzygy that occurs at true noon. However,
the high water does not coincide with the S2 high water. It is close to that
of M2, but the fact that the phase lags of M2 and S2 vary extremely slowly
(qs2 − qM2 ≈ 1.016°/h) indicates that these two waves are almost in phase at
the HW time. The HW time is thus very similar to the S2 wave HW time.

Where h(t) is the tide reduced to the M2 and S2 waves, we have:

h(t) = hM2 cos(qM2 t − kM2)+ hS2 cos(qS2 t − kS2)

High water occurs at tpm, such that:

sin(qM2 tpm − kM2)+
qS2 hS2

qM2 hM2

sin(qS2 tpm − kS2) = 0 (8.5)

As the S2 high water time is
kS2

qS2

, let:

tpm = kS2/qS2 + dt0. (8.6)

Based on the approximation:

qM2dt0 ≈ qS2dt0

we deduce equation (8.5):

tan qS2dt0 ≈
sin
[
kM2 − (qM2/qS2)kS2

]
(qS2 hS2/qM2 hM2)+ cos

[
kM2 − (qM2/qS2)kS2

] (8.7)

We have h = s (modulo 180°) on the day of syzygy. The Moon and Sun
together cross the meridian of the place (upper and/or lower branches). We
have seen that the approximate high water time (8.6) is tHW ≈ kS2/qS2 =

kS2/30, give or take dt0. EP, which denotes the establishment of port P, is
thus considered to be the high water time on a day of syzygy taking place at
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VIII. Characteristic values and tidal constituents

true noon. This parameter is expressed in hours by equation (8.6), with dt0
given by the approximation (8.7), or:

EP ≈
1

qS2

{
kS2

+ arctan
sin[kM2 − (qM2/qS2)kS2 ]

(qS2 hS2/qM2 hM2)+ cos[kM2 − (qM2/qS2)kS2 ]

}
(8.8)

Laplace’s approximation is generally used to compute EP, or: qM2/qS2 ≈

29/30. The definition of Ep differs from that of Em given in 8.6, but their
values are close.

1.1.3 • Semidiurnal spring tide at lunar perigee

Recall that tidal wave N2 is called the major elliptic constituent. It is in
phase with the M2 wave when (see Table 8.1):

s− p = kM2 − kN2 (modulo 360°)

While d(s − p)/dt ≈ 0.545°/h, this event occurs with a lag of (kM2 −

kN2 )/0.545 h after the Moon’s transit at perigee (s = p modulo 360°). These
two waves are in phase opposition with the same time lag with reference to
its transit at apogee (s− p = 180° modulo 360°). The modulation period is:

360

d(s− p)/dt
≈

360

0.545
= 660.6 hours⇒ 27.5 days

This value can be compared to the fortnightly spring-neap tidal cycle
(14.77 days). Hence, when the N2 wave increases the spring tide amplitude,
the following spring tide will be reciprocally reduced to about the same
extent. The M2, S2 and N2 waves will be in phase if the following conditions
are simultaneously fulfilled:

s− h =
kS2 − kM2

2
modulo 180° (8.9a)

s− p = kM2 − kN2 modulo 360° (8.9b)

Strictly speaking, such an event is impossible because the differences in
mean logitudes s− h and s− p have no common period. Were this situation
to occur at a given date, an infinite amount of time would be required for it
to occur again. Note, however, that h − p, whose period is around 412 days,
varies slowly in comparison to s−h, whose period is around a month (29.531
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1. Study of tidal characteristics of a port

days). The system of equations (8.9a 8.9b) can be reformulated to specifically
highlight h− p as follows:

h− p =
3kM2 − kS2 − 2kN2

2
modulo 180°. (8.10a)

s− p = kM2 − kN2 modulo 360° (8.10b)

This new system (8.10a and 8.10b) could be interpreted as follows. Let us
consider the time when the Sun transits in the vicinity of perigee or apogee
in the Moon’s orbit, the difference h − p satisfies equation (8.10a). The
time of the spring tide closest to this date corresponds to a maximum spring
tide amplitude. The Moon then transits in the vicinity of its perigee and
the difference s − p satisfies equation (8.10a). These events define perigean
spring tides with a period of:

180

d(h− p)/dt
=

180

0.036426
= 4941.43 hours ⇒ 205.89 days

1.1.4 • Equinoctial spring tides

The contribution of the K2 tidal wave can be expressed on the basis of
elements presented in Table 8.1, as follows:

hK2(t) = hK2 cos
(
30t + 2h− kK2

)
(8.11a)

or:

hK2(t) = hK2 cos
(
2t+ 2s− kK2

)
(8.11b)

The cosine argument of K2 may be formulated and interpreted in two
different ways:
• According to (8.11a), the K2 wave is considered as a semiannual modu-

lation, which varies with the solar declination (periodicity of the 2h parame-
ter) of the S2 wave
• According to (8.11b), the K2 wave is a modulation of the M2 constituent,

which varies with the lunar declination and has a period of 13.66 days
(periodicity of the 2s parameter).

The K2 wave therefore has two different origins, i.e. solar and lunar, which
explains why it is called the ‘lunisolar declinational constituent’. This K2
wave is also called a sidereal wave because it consists of two high waters and
two low waters per sidereal day (Earth’s rotation period).

It is in phase with the M2 wave when:

s =
kK2 − kM2

2
modulo 180°

Contrary to similar situations, this occurs when the Moon transits in the
vicinity of the Equator. When the Sun is also in the vicinity of the Equator,
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VIII. Characteristic values and tidal constituents

i.e. at equinox, the corresponding spring tides are more substantial. Then
we have:

h = kK2 − kS2 2 modulo 180°

These are equinoctial spring tides. Note that since the K2 and S2 con-
stituents have very close periods, their phase lags kK2 and kS2 are generally
quite close. Moreover, the Moon and Sun never transit simultaneously over
the Equator. The mean longitude of the Sun h, which has a period of 1 year,
i.e. 13.36-fold greater than that of s, does not markedly vary between two
lunations. The spring tide closest to equinox thus has an amplitude a very
similar to that of a spring tide occurring right at equinox.

1.1.5 • Perigean equinoctial spring tide

An exceptional so-called perigean equinoctial spring tide takes place
when M2, S2, N2 and K2 waves are in phase (this situation can only be
approximated). Its amplitude is the sum of the following amplitudes:

hM2 + hS2 + hK2 cos
(
2h+ kS2 − kK2

)
± hN2 cos

{
p− h+

[
(3kM2 − kS2 − 2kN2)/2

]}
The plus or minus sign preceding the contribution of the N2 constituent

means that this constituent has a positive or negative contribution from one
spring tide to the next.

1.2 • Main diurnal tide characteristics

The main diurnal tide constituents are given in Table 8.2. The coefficients
are those of the tide-generating potential relative to the highest one associ-
ated with the K1 constituent.

The argument numbers are those of the cosine in the harmonic tidal
equation. As is the case for semidiurnal tidal waves, the absolute phase lags
ki are used in association with the local civil time t.

The tidal contribution of the K1 wave is:

hK1 cos(15t + h+ 90− kK1) = hK1 cos(t+ s+ 90− kK1) (8.12)

It has one high water and one low water per sidereal day (23 h 56 min). As
is the case for the K2 wave, two interpretations are possible based on the two
argument expressions. This wave is the result of the superposition of a solar
constituent and a lunar constituent induced by the respective declination
variations of the Moon and Sun – the so-called ‘lunisolar declinational’.
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VIII. Characteristic values and tidal constituents

The tidal contribution of the O1 wave, or so-called ‘principal lunar wave’, can
be formulated as:

hO1 cos
(
15t + h− 2s− kO1 − 90

)
= hO1 cos

(
t− s− 90− kO1

)
. (8.13)

The cosine argument formulations on the right side of equations (8.12)
and (8.13) clearly highlight the symmetry of the K1 and O1 wave potential
constituents relative to the mean diurnal lunar constituent M1 (generally
very low). Like the K1 lunar constituent, the O1 wave is induced by lunar
declination variations.

Note also that the P1 constituent, whose tidal contribution is hP1 cos(15t−
h−90−kP1), is symmetrical to K1 with respect to the mean solar constituent
S1. The P1 wave is induced by solar declination variations, like the K1 solar
constituent.

Declinations of the Moon and Sun are responsible for diurnal tides. Decli-
nations of the Sun vary between virtually constant extremes−23°26′21′′ and
+23°26′21′′.

However, maximum declinations of the Moon vary markedly according
to the position of the ascending node N. The inclination of the lunar orbit at
the Equator is maximal (28°36) when the ascending node is around vernal
equinox and minimal (18°20) when it is around autumnal equinox. The
amplitudes of the lunar diurnal constituents are thus modulated for an
18.613 year period, i.e. the time required for the ascending node to complete
a full elliptical orbit, from one vernal equinox to the next (see Appendix B
§2).

1.2.1 • Diurnal spring tide characteristics

Due to the importance of the K1 and O1 wave constituent coefficients (see
Table 8.1), diurnal spring tides occur when K1 and O1 waves are in phase.
The arguments of the corresponding tidal waves thus give the following
condition:

s =
kK1 − kO1

2
− 90 modulo 180°

Depending on the phase lag, the diurnal spring tide therefore occurs
around the time when the Moon transits at its absolute maximum declina-
tion (s = 90 modulo 180°).

Conversely, the diurnal neap tide occurs around the time when the Moon
transits over the Equator.

Diurnal spring tides successively occur every:

180

ds/dt
=

180

0.549
= 327.85 hours⇒ 13.66 days
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1. Study of tidal characteristics of a port

They take place around the time when the Moon transits at its maximum
declination over a time interval T1, or the so-called ‘age of diurnal tide’, of

T1 =
kK1 − kO1

2ds/dt
=

kK1 − kO1

1.098
hours

HW generally does not coincide with the time of the diurnal spring tide,
but the gap between these two events is 12 h at most. The phase difference
between the K1 and O1 waves, which is zero at the diurnal spring tide time, is
still relatively low at the time of the nearest high water. The high water time
tHW (local civil time) thus does not differ markedly from the K1 high water
time:

tHW ≈
kK1 − h

15
− 6 hours

As the interval between two successive diurnal spring tides is 13.661 days
(327.859 h) and the angular velocity dh/dt is 0.041°/h (0.985°/d), the high
water times thus advance by 327.859×0.041/15 ≈ 0.90 h, or 54 min between
two spring tides. Based on equations (8.12) and (8.13), the tide reduced to
the two waves K1 and O1 at the diurnal spring tide times tved (waves in phase)
can be expressed by (n.b. cosine argument in degrees):

h(tved) = (hO1 + hK1) cos
{
t−

[
(kK1 + kO1)/2

]
+ k× 180

}
where the coefficient is k = 0 for the northern tropic and k = 1 for the
southern tropic.

Parameter E = (kK1 + kO1)/2 is sometimes called the ‘diurnal establish-
ment’.

1.2.2 • Solstitial diurnal spring tide characteristics

The contribution of the P1 tidal wave can be espressed by:

hPr1(t) = hP1 cos(15t − h− kP1 − 90)

Hence, the K1 and P1 waves are in phase when

h =
kK1 − kP1

2
− 90 modulo 180°

Contrary to similar phase lags, which are generally small for these two
constituents with close periods, this occurs around the solstices, or:
• h = 90° for the summer solstice
• h = 270° for the winter solstice.
These two waves are out of phase at equinox (h = 0° at spring equinox

and h = 180° at autumn equinox).
Diurnal spring tides are thus higher around the solstices and lower around

the equinoxes.

191



VIII. Characteristic values and tidal constituents

Note that relative amplitude variations are greater around equinox so the
diurnal tide can disappear completely at neaps.

1.2.3 • Perigean spring tide characteristics

The Q1 wave is a major diurnal elliptical constituent. It is in phase with
O1 when:

s− p = kO1 − kQ1 modulo 360°

or:
kO1 − kQ1

d(s− p)/dt
=

kO1 − kQ1

0.545
hours after the Moon’s transit at perigee

(s − p = 0° modulo 360°). These two waves are out of phase with the same
time lag after this celestial body transits at apogee (s − p = 180° modulo
360°). Like the N2 wave (major semidiurnal ellipsoid) with respect to the
mean lunar wave M2 (8.10b), the Q1 wave appears as a modulation of O1, i.e.
the main lunar wave, with a period of:

360/
[
d(s− p)/dt

]
≈ 360/0.545 = 660.6 hours ⇒ 27.52 days

and this value can be compared to the spring-neap tidal period (13.66 days).
Although the Q1 wave tends to increase the amplitude of a diurnal spring
tide, the following spring tide will be diminished to almost the same extent,
and inversely.

Let us now consider a case where the three K1, O1 and Q1 waves are in
phase. We thus have:

s = (kK1 − kO1)/2+ 90 modulo 360° (8.14a)

p = (kK1 + 2kQ1 − 3kO1)/2+ 90 modulo 360° (8.14b)

Strictly speaking, this situation is impossible because the main longi-
tudes s and p have no common period. If such an event were to occur at a
given date, it would take an infinite amount of time for it to reoccur. How-
ever, dp/dt � ds/dt, i.e. the mean longitude of lunar perigee p (period:
8.847 years) changes very slowly with respect to that of the Moon s (period:
27.321 days).

Equations (8.14a) and (8.14b) could thus be interpreted as follows. When
lunar perigee is around the summer solstice (p ≈ h = 90°) and winter
solstice (p ≈ h = 270°), which occurs with a periodicity of around
4.424 years, the solstitial diurnal spring tides are stronger. These events are
typical of diurnal spring tides at perigee.

1.2.4 • Diurnal spring tide amplitude

With all of the previously described elements, the following is a first-order
formulation for the total diurnal spring tide amplitude (the Moon’s transit at
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maximal declination) reduced to its four main constituents (K1, O1, P1, and
Q1):

hK1 + hO1 − hP1 cos(2h+ kP1 − kK1)

± hQ1 sin
{

p−
[
(kK1 + 2kQ1 − 3kO1)/2

]}
The± sign before the contribution of the Q1 wave indicates that the effect

of this constituent is to increase and decrease, by turns, successive spring
tides.

1.3 • Nonlinear interaction waves

It would be impossible to conduct an in-depth study on the impact of
interaction waves on tidal extremes. Complex factors are involved because
of the lack of linearity, so general rules cannot be formulated. However, it is
still possible to at least qualitatively assess the influence of often paramount
quarter diurnal waves.

Tide is the result of the superposition of a high number of harmonic
constituents. However, over a relatively short timespan (e.g. a day), the
tidal process seems to be the sum of different species, with each species
represented by a sine function. Based on this hypothesis, we can look at
the case of a semidiurnal tide in the presence of quarter diurnal interaction
constituents and, for instance, examine the tide reduced to M2 and M4 waves,
which are representative of mean tides relative to these species, or:

h(t) = hM2 cos(2t− kM2)+ hM4 cos(4t− kM4) (8.15)

The extremes are reached for t values such that dh(t)/dt = 0, or:

hM2 sin(2t− kM2)+ 2hM4 sin(4t− kM4) = 0 (8.16)

We can procede by a first-order approximation on the basis of the assump-
tion that the amplitude hM4 � hM2 . According to this hypothesis, the
extreme of the tide reduced to the M2 and M4 waves is close to that of the
M2(±hM2) tide.

Where tex is the t value corresponding to an extreme of the M2 con-
stituent, we then have:

tex = (kM2/2)+ k× 90°

with the k coefficient being even for high waters and odd for low waters.
The reduced tidal extreme time (8.15) is such that t = tex + q. Equation

(8.16) thus becomes:

(−1)khM2 sin 2q+ 2hM4 sin(4q+ 2kM2 − kM4) = 0 (8.17a)
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According to the initial hypothesis, the error q should be small and, as a
first-order approximation, equation (8.17a) becomes (with q expressed in
radians):

q[(−1)k hM2

hM4

+ 4 cos(2kM2 − kM4)]+ sin(2kM2 − kM4) ≈ 0 (8.17b)

which gives the approximate equation, for q expressed in degrees:

q = −
sin(2kM2 − kM4)

(−1)k hM2
hM4
+ 4 cos(2kM2 − kM4)

×
180°

p

(8.17b)

We verify a posteriori that hypothesis hM2 � hM4 confirms the approxi-
mation on the lowness of the error q. This latter equation (8.17b) shows that
quarter-diurnal waves can modify the semidiurnal tidal extreme times. The
HW correction applied (k even) is contrary to the LW correction (k odd).

This correction also depends on sin(2kM2 − kM4), and the HW time is
advanced (q < 0) or delayed (q > 0) depending on whether the sign of
2kM2 − kM4 is positive or negative. For tidal height extremes h(t) given by
equation (8.15), we can consider as a first-order approximation that:

h(tex + q) ≈ h(tex)

which gives:

h(tex + q) ≈ (−1)khM2 + hM4 cos(2kM2 − kM4)

It should be noted that the height correction hM4 cos(2kM2−kM4) has the
same sign for the M2 wave HW and LW. This is an important point because
it indicates that the mean tidal height h(t) cannot be determined on the basis
of the mean observed tidal extremes.

1.4 • Different types of tide

In Chapter I on general features of tides, we presented tide graphs (fig-
ure 1.6) based on the French classification of four types of tide: semidiurnal,
mixed semidiurnal, mixed and diurnal. There are also other classifications
since this French classification is somewhat arbitrary. The tide-generating
force essentially consists of diurnal and semidiurnal tidal terms that are
found in the form of corresponding constituents with different amplitudes
and phases.

For simplicity, let us consider the case of a tide reduced to its diurnal and
semidurnal constituents. Based on the hypothesis (confirmed here) that
tidal amplitudes and phases vary slowly during a diurnal tidal cycle, these
parameters can be considered constant over this timespan.
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Where the pairs (h1, w1) and (h2, w2) represent the amplitudes and phases
of diurnal and semidiurnal constituents, then:

h(t) = h1 cos(t− w1)+ h2 cos(2t− w2)

and, let: r = h1/h2, u = t− (w2/2), a = w1 − (w2/2), which becomes:

h(t) = h2 [r cos(u− a)+ cos 2u]

It can then be demonstrated that:
• if r ≥ 4, there is always one daily high water and low water;
• if r ≤ 2, there are always two daily high and low waters;
• if r ≥ 4, the daily number of high and low waters (two or four) depends

on a.
Mathematical developments (not outlined here) are required to demon-

strate these results, which are not fundamental. r and u must be computed
to determine the number of high and low waters per day. These highly vari-
able parameters are therefore hard to use for a classification. A less stringent
but easier to use criterion is preferred. The classification adopted in France
(F) includes four types according to the value of the RF coefficient, the ratio
of the sums of the amplitudes of the two main diurnal waves (K1 and O1)
and semidiurnal waves (M2 and S2), or:

RF =
hK1 + hO1

hM2 + hS2

We therefore have:
• the semidiurnal type for: RF < 0.25
• the mixed semidiurnal type for: 0.25 ≤ RF < 1.5
• the mixed type for: 1.5 ≤ RF < 3
• the diurnal type for: RF ≥ 3
In Great Britain (GB), the M2 constituent is not taken into account and

the RGB coefficient is given by:

RGB =
p

2
×

hS2

hK1 + hO1

The GB classification only includes two types of tide:
• the semidiurnal type for: RGB > 1
• the diurnal type for: RGB < 1
Three types are often adopted in other countries (semidiurnal, mixed and

diurnal), but the criteria sometimes vary between countries.
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2 • Typical extreme levels

Before considering extreme HW conditions, recall that the harmonic tidal
equation (see Chapter V) can be formulated as a function of the local civil
time t, as follows:

h(t) = Z00 +

i=N∑
i=1

hi cos(Vi − ki) (8.18)

In this equation, Z00 is the mean level, while parameters hi, Vi and ki
respectively represent the amplitude, cosine argument (in the development
of the tide-generating potential) and the absolute phase lag of constituent
i. The absolute phase lag ki and the local civil time are used here to be in
line with the options selected at the beginning of this chapter. Recall that
parameter ki represents the wave lag (in degrees) relative to the constituent
associated with the potential. ki can be divided by the angular velocity
dVi/dt (in degrees/hour) in order to obtain this wave lag expressed in time.
All of the elements Z0, hi and ki are constant at a given place. Only the Vi
argument is time dependent and expressed via the fundamental variables (t,
s, h, p N and p1) by equation (see 6.2):

Vi = mt,it+ms,is+mh,ih+mp,ip+mN′,iN
′
+mp1,ip1 +mp/2,i

p

2
where the angular unit is the radian and element mp/2,i represents the num-
ber of p/2 radians to add to ensure that the cosine coefficient will be positive.

This argument can thus be formulated as:

Vi =
−→
Mi ×

−→
X +mp/2,i

p

2
(8.19)

with the× symbol representing the scalar product.
The result is that the i wave is characterized by the

−→
Mi vector having[

mt,i, ms,i, mh,i, mp,i, mN,i, mp1,i
]

as constituents and the Vi argument can
be considered as a linear function of the

−→
X vector having the fundamental

variables
[
t, s, h, p, N′, p1

]
as constituents. This formulation will enable us

to study extreme tidal heights.

2.1 • The extreme tide problem

In the light of the latter equation (8.19), the height h(t) given by equation
(8.18), can be considered as a function C of vector

−→
X . Although this func-

tion C has a period of 2p relative to each fundamental variable (constituents
of vector

−→
X ), it is not a periodic function since the fundamental variables

have incommensurable periods. Hence, a given vector
−→
X cannot material-

ize in finite time. We therefore will not seek a solution to the problem as an
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explicit temporal function, but rather as a function of each of these indepen-
dent variables, which represent as many degrees of freedom of the system.
The extreme height values are obtained when

−−→
grad C = 0.

This condition can still be represented by the following equations:

∂C

∂t

=
∂C

∂s
=

∂C

∂h
=

∂C

∂p
=

∂C

∂N′
=

∂C

∂p1
= 0

These equalities constitute a system of equations that cannot be directly
solved due to their paramount character. With the x symbol denoting a
fundamental variable, based on an approximate solution

−→
X 0, it is necessary

to make a series of first-order approximations, such that:

∂C

(
−→
X
)

∂x
≈

∂C

(
−→
X 0

)
∂x

+

(
−→
X −
−→
X 0

) ∂2
C

(
−→
X 0

)
∂x2 (8.20)

The new vector
−→
X obtained by eliminating the right side of equation

(8.20) provides a better approximation:

−→
X =

−→
X 0 −

∂C

(
−→
X 0

)
∂x

/
∂2

C

(
−→
X 0

)
∂x2

but as long as there is a suitable choice of
−→
X 0 to ensure the consistency of

the successive approximations.
The idea is thus to come up with an approximate solution

−→
X 0 by deter-

mining the values of constituents
[
t, s, h, p, N′, p1

]
that are close enough

to the extreme height to ensure that the convergence to this solution will be
achieved.

2.2 • Finding the approximate solution

Because of the complexity of the problem, the semidiurnal and diurnal
tidal types should first be separated so that they can be processed individu-
ally. Questionable cases, generally concerning mixed tides and mixed semid-
iurnal tides, are examined by applying the two previous treatments (diurnal
and semidiurnal) in order to come up with the best solution.

This question is dealt with on the basis of the fact that the amplitudes
of tidal constituents are generally increasing functions of the correspond-
ing tide-generating potential coefficients with a time lag with respect to the
age of tide. This rule always applies when nonlinear interaction constituents
are low or negligible. Tides that fulfil these conditions are treated sepa-
rately. Solar perigee is considered constant since its movement is very slow
(dp1/dt < 2°/century). We thus adopt the constant value p1 = 283° that
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applied at the beginning of the 21st century. Its movement could still be
taken into account despite a slight increase in computation time, but the
extreme values calculated in this way would not be reached for around 40
centuries, so this calculation is of no current interest.

2.2.1 • Extreme diurnal tide levels

The ascending lunar node has a different role for diurnal and semidiurnal
constituents. As already noted, the inclination of the lunar orbit at the
Equator is maximal (28°36) when the ascending node is at vernal equinox
(N = 0°) and minimal (18°20) at autumnal equinox (N = 180°). However,
diurnal waves are greater as the declination increases. A baseline N value of
0° is thus used for the maximum diurnal. The maximal action of the diurnal
tide is obtained when the celestial bodies meet the following conditions
(fundamental variables expressed here in radians):
• The two declinations are maximal, or: s = h =

p

2
+ kp

• The Moon is at perigee (see 1.2.3): p = s+ 2kp

• The Moon transits over the meridian of the place: t = 2kp (high water),
t = p+ 2kp (low water).

However, the maximum amplitude of the diurnal tide is not reached at the
same time because of the age of this species, as reflected by a certain degree
of tidal lag with respect to the action of the celestial bodies. The previous
equations must be modified in order to take this lag into account, which is
possible via the harmonic constants of the place. The arguments of the four
main diurnal constituents (K1, O1, P1 and Q1) provide the four equations
required to find the t, s, h, and p values fulfilling the baseline conditions
given above. By taking the argument expression in equation 8.1 into account
and assuming fi = Vi − ki (cosine argument of the i wave), we get the
following system of equations:

fK1 = t+ s− kK1 + p/2

fO1 = t− s− kO1 − p/2

fP1 = t+ s− 2h− kP1 − p/2

fQ1 = t− 2s+ p− kQ1 − p/2

We can obtain a first approximate solution through this system. Two
subscripts are attached to the corresponding parameter values, i.e. 0 for the
baseline value and 1 for the diurnal tide:
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t0,1 =
kO1 + kK1

2
+ ktp

s0,1 =
kK1 − kO1

2
−

p

2
+ ksp

h0,1 =
kK1 − kP1

2
−

p

2
+ khp

p0,1 =
2 kQ1 + kK1 − 3 kO1

2
−

p

2
+ kpp

(8.21)

where all kj type coefficients are relative integers.
To determine extreme high and low waters, an iterative process is used

alternately with the eight baseline conditions (number of arrangements with
replication: 23

= 8, corresponding to the attribution of 0 or 1 values to the
three coefficients kt, ks and kh, while noting:
• that the kt value is even for high waters and odd for low waters
• and that the action peaks around the time of the Moon’s transit at

perigee, so kp = ks can be used.

2.2.2 • Extreme semidiurnal tide levels

Concerning the semidiurnal constituents, it is not easy to choose a base-
line condition for the mean longitude of the ascending node N = −N′. Since
the sought-after extreme spring tide occurs around the time of the Moon’s
transit at the Equator, the orbital inclination value is not necessarily as high.
However, because of tidal propagation irregularities, the maximum ampli-
tude does not correspond exactly to the Moon’s transit at the Equator and the
semidiurnal constituents are thus higher when the declination is low. For the
semidiurnal maximum, we thus select a baseline N value of 180° (autumnal
equinox node) corresponding to the slightest lunar declination variations.
The maximum semidiurnal tidal action thus corresponds to the following
conditions:
• celestial bodies at the Equator: h = s+ kp

• the Moon at perigee: p = s+ 2kp

• the Moon on the meridian (HW): t = kp

• the Moon at maximum declination (LW): t = p/2+kp.
Like the diurnal tide, the sought-after baseline conditions are deduced

from the arguments fi of the four main semidiurnal tidal constituents (M2,
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S2, N2, K2). Table 8.1 gives:

fM2 = 2t− kM2

fS2 = 2t+ 2s− 2h− kS2

fN2 = 2t− s+ p− kN2

fK2 = 2t+ 2s− kK2

When applying the same conventions as those used for the diurnal tide,
but with a subscript of 2 for semidiurnal tides, the following baseline condi-
tions can be deduced:

t0,2 =
kM2

2
+ kt

p

2

s0,2 =
kK2 − kM2

2
+ ksp

h0,2 =
kK2 − kS2

2
+ khp

p0,2 =
2 kN2 + kK2 − 3 kM2

2
+ kpp

(8.22)

Recall:
• that the kt value is even for high waters and odd for low waters
• and that the action peaks around the time of the Moon’s transit at

perigee, so the kp = ks equality can be adopted.
As for diurnal tides, an iterative process is implemented alternately with

the eight baseline conditions, corresponding to kt, ks and kh values of 0 or 1.

2.2.3 • Extreme mixed semidiurnal and mixed tidal levels

In this case, the risk is that an extreme tidal level may not lead to a
convergence point in the iterative process.

Recall that the height, expressed in the form C (a function of
−→
X ), is

periodic with respect to each fundamental variable (period 2p). As an
example, consider the case of h, i.e. the mean solar longitude. During
spring tide periods, the semidiurnal tide peaks around the time of equinox
(h ≈ kp), whereas the diurnal tide peaks around solstice (h ≈ p/2+kp). By
setting the other astronomic variables at their baseline value, superposition
of the diurnal and semidiurnal tides is reflected by the sum of two sinusoids
(a function of h) approximately in phase opposition. The maximum of this
sum is for h ≈ kp, or for h ≈ p/2 + kp, depending on the relative size
of the diurnal and semidiurnal amplitudes around their respective maximal
values. Hence, for h, by selecting baseline conditions around kp/2 with
k successively taking the four values 0, 1, 2 and 3, it is certain that all
possibilities will be covered. The same rationale could be applied to s, i.e.
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the mean lunar longitude. For the t variable (civil lunar time), the number
of baseline values to assign to it will be 2 if ratio r = h1/h2 ≥ 4 (diurnal tide,
see §1.4 above) and 4 in other cases. Concerning p (mean lunar perigean
longitude), it should be noted that the two tidal constituents (diurnal and
semidiurnal) are both subjected to maximum action at the time of the
Moon’s transit at perigee. The fact that the ages of the tide (diurnal T1 and
semidiurnal T2, which are about a few days) are different is not important
in practice, since T1 and T2 are negligible with respect to the period of
p (≈ 8.85 years). A baseline p value close to s could be chosen without
problem. Concerning mixed semidiurnal or mixed tides, based on the above
considerations, this tide will have to be separated into its two constituents
(diurnal and semidiurnal) for individual treatment in order to obtain the
sought-after extreme.

2.2.4 • Extreme shallow water tidal levels

Double high or low waters are generally present when there are substantial
quarter and sixth diurnal tides. The iterative process can give a result that
does not necessarily correspond to an extreme high or low water. In such
cases, a procedure should first be implemented to detect situations in which
this type of phenomenon is likely to occur. Then, where relevant, the number
of baseline values for the t variable is increased.

The procedure is identical to that whereby the number of high and low
waters is sought according to the value of the ratio r = h1/h2 (see 1.4),
where h1 and h2 respectively represent the diurnal and semidiurnal tide
amplitudes.

Based on the same conventions, where hn denotes the amplitude of the
n-th diurnal constituent, we systematically look for 8 high and low waters if
h4/h2 > 0, 25 and 16 high and low waters if h6/h2 > 0.0625.

2.3 • Mean spring tide

According to a generally adopted standard, the mean spring tide is often
defined, especially for ports where there are few tidal records, using the two
main semidiurnal constituents on one hand, and diurnal consituents on the
other.

Here the following abbreviations denote the high water (HW) and low
water (LW) spring (ST) or neap (NT) tide heights:
• HWST: spring tide high water height
• HWNT: neap tide high water height
• LWNT: neap tide low water height
• LWST: spring tide low water height.
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Where Z0 denotes the mean level, we thus obtain:
• for the semidiurnal tide:

— HWST = Z0 + (hM2 + hS2)

— HWNT = Z0 + (hM2 − hS2)

— LWNT = Z0 − (hM2 − hS2)

— LWST = Z0 − (hM2 + hS2)

• for the diurnal tide:
— HWST = Z0 + (hK1 + hO1)

— LWST = Z0 − (hK1 + hO1)

For mixed semidiurnal and mixed tides, the formulation is slightly more
complicated. It includes the phase lag between the mean semidiurnal con-
stituent and the diurnal constituent during spring tide periods.

These equations have the advantage of being simple and may be consid-
ered as blanket definitions. However, the values obtained are unsatisfactory,
at least for representing the mean of these specific heights. These equations
do not give the same results as those obtained when the mean high and low
water heights during spring and neap tides are calculated on the basis of
recorded data. For instance, the fact that HWST, which is defined as a mean,
is not identical to the mean spring tide high water height is often a source of
confusion. Let us examine, for instance, the case of Le Havre where semidi-
urnal tides prevail. The following results are obtained for this port:

Z0 = 487.7 cm

hM2 = 261.6 cm

hS2 = 87.6 cm

⇒
{

HWST ≈ 837 cm

LWST ≈ 139 cm

The mean spring tide high and low water heights are actually 790 cm and
120 cm, respectively. The 47 cm and 19 cm errors for spring tide high and
low waters, respectively, are too high to claim that these two determination
methods can generate similar results.

There is a real risk of confusion. The simplified equation is unsuitable in
ports where there are marked nonlinear interactions. For Le Havre port, for
instance, we have HWST≈ 837 cm, i.e. very close to the maximal theoretical
height (842 cm), which obviously is out of line with the actual situation
(790 cm).

The main reason for the inadequacy of the simplified equation for defining
a mean spring tide is that the nonlinear interaction constituents have a rela-
tively important role that is not taken into account. Moreover, simplicity is
no longer an advantage with current computation technology. All harmonic
constituents for a port, which are required to be able to quickly come up with
an accurate forecast, can now be readily taken into account. However, one
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important aspect should be mentioned concerning the spring and neap tide
definitions.

Recall that semidiurnal spring tides occur around the time when the
difference is s − h = (kS2 − kM2)/2 + kp (see 1.1.3). The mean spring
tide high and low waters are thus mean high and low water heights around
these times. If the mean is calculated for a sufficiently long period, all
constituents whose astronomical argument is not of the form k1t+k2

(
s− h

)
are eliminated (k1 and k2 are relative integers). Obviously M2 and S2 remain,
along with all nonlinear interaction constituents with which these latter
constituents are involved, e.g. MSf , 2MS2, 2SM2, M4 and MS4, which
are compound waves that are not accounted for in the simple equations
presented above. The same applies (see 1.2.1) for diurnal spring tides, which
occur around the time when the mean lunar longitude fulfils the following
condition:

s =
kK1 − kO1

2
−

p

2
+ kp

All constituents with an astronomical argument that is not of the form
k1t + k2s are cancelled out in the mean. The principal constituents K1 and
O1, along with the compound waves OQ2, K2, MK3, etc., naturally remain.

The computations can thus be conducted in exactly the same way as for
extreme tides. However, it is essential to only take constituents that are not
cancelled out in the mean into account, i.e. those with an astronomical
argument of the form k1t + k2

(
s− h

)
for semidiurnal tides, or k1t + k2s

for diurnal tides.
In the iterative process, high and low waters are calculated at the same time

as the maximum amplitude. Since this is a mean computation, it is essential
to take s − h variations into account for semidiurnal tides and s variations
into account for diurnal tides during a half tidal cycle on both sides of high
and low waters.

We have:
• for a semidiurnal tide, a cycle time of TM2 = 12.42 h, with: d(s −

h)/dt = 0.5079479°/h
• for a diurnal tide, a cycle time of TM1 = 24.84 h, with: ds/dt =

0.5490165°/h.
Assuming that there is a sinusoidal amplitude variation on both sides of

the maximum, correction factors can be applied for each type of tide:
• for semidiurnal tides:

c2 =
1

TM2

∫ TM2/2

−TM2/2
cos

{[
d(s− t)/dt

]
t
}

dt = 0.9995 ≈ 1

203



VIII. Characteristic values and tidal constituents

• for diurnal tides:

c1 =
1

TM1

∫ TM1/2

−TM1/2
cos

[
(ds/dt)t

]
dt = 0.9976 ≈ 1

These corrections, which are very close to unity, are overlooked in prac-
tice.

2.4 • Extreme neap tides

The baseline conditions used for approximating extreme neap tide levels
are contrary to those used for standard spring tides.

For diurnal tides, we focus on the vicinity of the phase opposition of the
K1 and O1 waves at the time of zero declination of the two celestial bodies
(h = s = kp) and the Moon’s transit at apogee (p = s + p + 2kp), which
is reflected by the following baseline conditions (to be compared with the
equation system 8.21):

t0,1 =
kO1 + kK1

2
+

p

2
+ ktp

s0,1 =
kK1 − kO1

2
+ ksp

h0,1 =
kK1 − kP1

2
+ khp

p0,1 =
2 kQ1 + kK1 − 3 kO1

2
+ kpp

(8.23)

N is of little importance because the lunar declination is near zero. How-
ever, a baseline value of around N = 180° should be chosen, corresponding
to the minimum inclination of the lunar orbit.

For semidiurnal tides, we focus on the vicinity of the phase opposition of
M2 and S2 waves at the time:
• of the maximum lunar declination, or: s = p/2+kp and N= 0
• of the minimum solar declination, or: h = kp

• of the Moon’s transit at apogee, or: p = s+ p+ 2kp.
This celestial body arrangement is reflected by the following baseline

conditions:

t0,2 =
kM2

2
+ kt

p

2

s0,2 =
kK2 − kM2

2
+

p

2
+ ksp

h0,2 =
kK2 − kS2

2
+ khp

p0,2 =
2 kN2 + kK2 − 3kM2

2
−

p

2
+ ksp

(8.24)
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These conditions (8.24) can be compared with those of equation (8.22)
corresponding to extreme spring tide levels. Algorithms developed for
spring tides can thus be used for neap tides, sometimes with a few modifi-
cations to account for the fact that extreme neaps can be of zero amplitude.

2.5 • Mean neap tides

The rationale outlined above concerning spring tides can be applied with-
out modification for calculating typical mean neap tide levels by simply mod-
ifying the baseline s − h values for semidiurnal neap tides and s for diurnal
neap tides. We have seen (1.1.2) that semidiurnal neap tides occur around
the time when the mean longitudes of the Moon and Sun are in phase quadra-
ture, contrary to similar kS2 − kM2 situations, or:

s− h =
kS2 − kM2

2
+

p

2
+ kp

In neap tide situations, the mean high water and low water heights are thus
the mean heights of high and low waters close to these times. If the mean of
these heights is computed over a sufficiently long time, all constituents whose
astronomical argument is not of the form ktt + ks−h

(
s− h

)
are eliminated

(kj are relative integers). There are naturally also M2 and S2 main waves,
along with all the nonlinear interaction constituents that bring these two
main semidiurnal waves into play (e.g. MSf , 2MS2, 2SM2, M4, MS4), which
are not accounted for in the simplified equations that give the HW and LW
and NT values presented in 2.3. Diurnal neap tides occur around the time
when:

s =
kK1 − kO1

2
+ kp

All constituents whose argument is not of the form ktt+ kss are cancelled
out in the diurnal neap tide mean. As for semidiurnal tides, there are two
main diurnal waves K1 and O1, along with all the corresponding compound
waves: OQ2, K2, MK3, etc.

2.6 • Tidal coefficient

For the comparison of tidal coefficients of different ports (see 3.2), Laplace
characterized each port by a tidal height unit: “the height unit is the mean
amplitude (half-range of tide) of the highest tide following the moment of
the full or new moon, around equinoctial syzygy.”

The coefficient concept is directly derived from this definition. Note that,
by convention, the mean amplitude of the spring tide that follows the syzygy
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closest to equinox is given a coefficient of 100, as represented by the following
equation:

C = 100
hpm − Nmm

U
in which we have:
• the tidal coefficient: C
• the high water height: hHW
• the half-tide level: Nht
• the height unit: U
In practice, the coefficient is calculated just from the semidiurnal con-

stituents. The popularity of this coefficient concept in France may be
explained by the fact that it provides a very quick indication on the tidal
amplitude. Obviously it is only a relative indication, but it is very widely used
by people visiting and active in the Channel and Atlantic coastal regions of
France. The coefficient also has the advantage of facilitating rapid calcula-
tion of tidal heights and currents. Tables of tide corrrection used for calculat-
ing tidal heights in secondary ports, and current atlases providing elements
for mean spring tide and neap tide situations that correspond to coefficients
of 95 and 45, respectively. It is very easy, based on knowledge of the current
tidal coefficient, to perform a rule of three to obtain a good estimate of tidal
heights or corresponding currents.

Mariners are aware of the fact that these values are approximate. They may
apply this coefficient (which is only calculated for the port of Brest) for the
entire French Atlantic coast, but possibly not for North Sea ports. In this
latter region, relative tidal amplitude variations are much lower than at Brest.
However, for navigational purposes, it would not be reasonable to apply this
Brest-based coefficient to areas that are too remotely located with respect to
this port. It also does not make sense to apply it for ports that do not have
semidiurnal tides. Since this type of coefficient is very practical, it may be
given a more universal scope based on the harmonic equation, i.e. applicable
for all types of tide.

2.7 • Coefficient calculation based on the harmonic tidal equation

According to Laplace’s highly relevant concept, the tidal coefficient is a
measurement of tidal amplitude in reference to the height unit U. We have
just seen that this reference is the mean equinoctial spring tide amplitude.
The term ‘mean’ essentially refers to the range that the mean encompasses.
This is a priori based on the assumption that all extreme contributions due to
movements of lunar perigee (p) and of the ascending node (N) should cancel
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each other out. This implies that the mean is calculated over a sufficiently
long period (saros is optimal). Hence, in the harmonic tidal equation, all
tidal waves whose astronomical argument depends on p or N are cancelled
out in the mean.

To make this coefficient more widely applicable, it is necessary to deter-
mine the height unit U that could be applied to all tidal types rather than just
for semidiurnal tides and equinoctial spring tides. The extreme tide compu-
tation method naturally lends itself to a height unit that is defined accord-
ing to constituents whose astronomical arguments are not dependent on the
mean longitudes p and N.

By applying a calculation method that is identical to that used for com-
puting extreme tides, we look for the maximum CU, i.e. the value of the C

function for
−→
X =

−→
X U, where

−→
X U is the vector of the

[
t, s, h

]
constituents.

Beyond simply being a tidal height indicator, the coefficient defined by
Laplace relates more to the amplitude of the tide hHW−NHT. However, this
amplitude concept, which can be readily understood for essentially diurnal
or semidiurnal tides, is harder to apply for mixed semidiurnal tides. In order
to avoid defining a coefficient that could undergo substantial variations
within a day, the height or amplitude notions are replaced by the notion
of ‘variability’, whose value is deemed to be statistically proportional to the
standard deviation (square root of the variance).

Where hk,U denotes the amplitude of the k species, which corresponds to
the maximum CU (k = 1 for diurnal constituents, k = 2 for semidirunal
constituents, etc.), the height unit U can be formulated as follows:

U =
√∑

k

h2
k,U

When hk denotes the amplitude of the k species at a given time, the C
coefficient at the same time can be formulated as follows:

C = 100

√∑
k h2

k

U
. (8.25)

This definition is not exactly the same as that used for calculating the
Laplace coefficient. For the port of Brest, the amplitudes of diurnal waves
and interactions are relatively low as compared to that of semidiurnal species.
Results obtained via the two equations for this port are very similar: different
tests carried out on coefficients within the extreme value range did not reveal
any errors of over 1. Since equation (8.25) is very widely applicable, it can be
used to define a universal tidal coefficient. Note that the hk amplitudes are
simply moduli of the reduced vectors Ck.

207



VIII. Characteristic values and tidal constituents

2.8 • Examples of applications for different types of tide

Four ports (Brest, Honolulu, Do-Son and Nagasaki) were selected to
provide examples of calculation results for certain tidal parameters that are
outlined in this chapter.

2.8.1 • Brest: 48° 23′ N , 4°30′ W

Type: Semidiurnal tide

Mean level: 402.0 cm

Diurnal age: 97.3 h

Semidiurnal age: 381 h

High water Low water

Highest: 779.1 cm Lowest: 17.0 cm

Coef. 100: 720.8 cm 83.3 cm

mean ST: 690.9 cm 109.4 cm

mean NT: 521.0 cm 278.4 cm

Lowest: 457.3 cm Highest: 342.9 cm

Hours (UT+1.0 h):

HWST: 05 h 33 min LWST: 00 h 13 min

HWNT: 23 h 42 min LWNT: 17 h 40 min

2.8.2 • Honolulu: 21° 18′ N, 157° 52′ W

Type: Mixed semidiurnal tide

Mean level: 24.0 cm

Diurnal age: 10.8 h

Semidiurnal age: −4.0 h

High water Low water

Highest: 80.0 cm Lowest: −13.7 cm

Coef. 100: 71.4 cm −8.9 cm

mean ST: 61.5 cm −1.0 cm

mean NT: 28.7 cm 22.5 cm

Lowest: 24.0 cm Highest: 24.0 cm

Hours (UT-10.0 h):

HWST: 04 h 11 min LWST: 20 h 28 min

2.8.3 • Do-Son: 20° 40′ N, 106° 48′ E

Type: Diurnal tide

Mean level: 186.0 cm

Diurnal age: 50.2 h

Semidiurnal age: 51.4 h
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High water Low water

Highest: 408.8 cm Lowest: −24.5 cm

Coef. 100: 364.4 cm 18.3 cm

mean ST: 333.7 cm 39.7 cm

mean NT: 186.1 cm 185.5 cm

Lowest: 186.0 cm Highest: 186.0 cm

2.8.4 • Nagasaki: 32° 44′ N, 129° 52′ E

Type: Mixed semidiurnal tide

Mean level: 164.0 cm

Diurnal age: 18.0 h

Semidiurnal age: 25.5 h

High water Low water

Highest: 337.4 cm Lowest: −48.6 cm

Coef. 100: 317.0 cm −19.4 cm

mean ST: 286.2 cm 39.9 cm

mean NT: 206.2 cm 142.6 cm

Lowest: 164.0 cm Highest: 164.0 cm

Hours (UT+9.0 h):

HWST: 08 h 58 min LWST: 15 h 02 min

3 • Extreme tidal heights

Sea level variations on time scales ranging from a few hours to a few years
are the result of two overlapping phenomena:
• random movements, mainly of meteorological origin (but sometimes

tectonic, e.g. tsunamis), which are surges and negative surges that are usually
symbolized by: SD(t)
• astronomical tides, which are deterministic phenomena whose ha(t)

predictions are listed in tide tables; with Z00 being the mean sea level (inter-
national convention) relative to the hydrographic datum (see Chapter IX for
the definition of the different mean levels), and its prediction is expressed
by:

ha(t) = Z00 +
∑

i

hi cos(Vi − ki)

The observed sea level is usually expressed by:

h(t) = Z00 +
∑

i

hi cos(Vi − ki)+ SD(t)
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Consequently, the highest tidal height, which has a random constituent,
is a factor that only makes sense if evaluated in terms of probability. We
thus have to look for the mean time interval, or so-called return period*,
that separates two rare events in which the tidal heights are above a certain
threshold.

When expressed in this way, the problem seems to be limited to a simple
mean calculation. However, to get a significant mean, the observation time
has to be much longer than the sought-after return periods. Considering the
extent of available records, return periods of more than 2 or 3 years could
not be estimated in most cases.

This problem can still be efficiently dealt with for ports where over 10
years of tide records are available by benefitting from the fact that surges, neg-
ative surges and tides are very independent phenomena. If many tidal data
are available, it should be easy to calculate the probability laws governing
rare but unexceptional events such as high spring tides or very substantial
positive surges. Two such events may never have been previously observed
to occur simultaneously, but the return period corresponding to this type
of uncommon phenomenon can be computed with a high degree of confi-
dence by combining probability laws associated with the tide and also with
positive surges. As an example, figures 8.1 and 8.2 (a and b) show results
obtained for Brest. Figure 8.1 gives the level of probability that a predicted
high water height will be equal to a given value (to the nearest centimetre).

200                                                      300                                                     400 cm

high water heights

0.008 cm-1

0.006

0.004

0.002

Figure 8.1: Brest, France: Curve representing the function f (§), the probability den-
sity function for high water heights § (x-axis). It gives the probability (y-axis) that a
high water will have a height ranging from § to §+ d§, with d§ = 1 cm.
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With positive surges, it may be hard to calculate the probability associated
with a positive surge that is greater than a given value. One difficulty con-
cerns the fact that very substantial, but uncommon, positive surges cannot
be overlooked. These never previously observed events should be taken into
account via an extrapolation model. The chosen model is called ‘Gumbel’s
law’, which is widely used for estimating river and stream floods. Applica-
tion of this model to the longest available series of tidal height measurements
(120 years at Brest) demonstrated that this law is very suitable for estimating
tide levels.

Gumbel’s law was formulated on the basis of a study of extreme values
attained by a random variable through independent samplings. Fisher and
Tuppet, followed by Gumbel, first analysed this type of variable or those
concerning the overshooting of various thresholds. The adopted law is just
one special case of those deduced from probability theory. It was found to be
very suitable for the analysis of flood phenomena, thus explaining its success.
Recall that if F(§) is the distribution function of the positive surge §, which
is considered as a random variable, this function represents the probability
(Pr) that the random variable values will be lower than a given value §0, or:
F(§) = Pr(§ < §0).

If for all values of § (given variable of −∞ to +∞), function F(§) has a
derivative f (§), such that

F(§0) =

∫
§0

−∞

f (§)d§

where function f (§) defines the probability density function, i.e. the proba-
bility that the positive surge value will range from § to §+ d§.

Gumbel’s law is expressed by the function:

F(§) = exp
[
− exp(a§+ b)

]
where a and b are the parameters to be determined.

Hence, where S(§0) denotes the probability of observing a positive surge
of over §0, we have: S(§0) = Pr(§ > §0) = 1− F(§0), or

S(§) = 1− exp
[
− exp(a§+ b)

]
(8.26)

For experimental validation of this law, the observed points are plotted
in a system of so-called Gumbel coordinates (§, Y), where the ordinate Y is
linked to § by the following equation:

Y(§) = log
{
− log [1− S(§)]

}
(8.27)
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It also turns out that, since the tide and positive surges are treated sepa-
rately, the choice of extrapolation model is not very critical for the estima-
tion of extreme height return periods.

positive surges
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50                          100                         150 cm
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450                                              500 cm
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0.00001

0.0001
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Figure 8.2: Brest, France: These two graphs present, in a Gumbel coordinate system,
probabilities (with associated return periods) that a positive surge (top) and an extreme
height (high water + positive surge)(bottom) will exceed a given value.
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3. Extreme tidal heights

Figure 8.2 (top) shows the probability S(§0) = Pr(§ > §0) that a positive
surge § will exceed a given value §0 in the coordinate system (8.27) described
by Gumbel. The experimental points, which follow a stepped curve, would
be aligned in case of compliance with the law defined by equation (8.26). The
dashed line shows the best fit in the experimental point cloud. The two thin
line curves on both sides of the dashed line define the zone where 90% of
the experimental points would be located if the extrapolation model used is
suitable.

Figure 8.2 (bottom) shows the results obtained when applying a combina-
tion of probability laws concerning predicted positive surges and high waters
(tidal). Where f (z) denotes the density function for the probability that the
predicted high water height z will have a value ranging from z to z + dz, as
expressed by: f (z) dz. Note also that the z domain is bounded by the values
zmin and zmax, which represent the predicted HW extremes.

As the positive surges § are a priori independent of the predicted heights
z, the probability Pr(h0) of observing a sea level of over h0 is thus obtained
via the convolution product:

Pn(h0) =

∫ zmax

zmin

f (z)S(h0 − z)dz

There are 705.8 high waters a year on average under a semidiurnal tidal
regime. Hence, the mean number of observed high waters above the h0 value
is 705.8×P(h0) per year. The return period TR(h > h0), expressed in years,
of an observed extreme tide h > h0 is therefore:

TR(h > h0) =
1

705.8× Pr(h0)
years

Function Pn(h) gives the probabilities of observing high water heights
above a given value, which can then be expressed in terms of associated
return periods. We have decided to just present heights above the maxi-
mum astronomical tide (thus avoiding the problem of dealing with negative
surges).

It should be noted that under certain conditions return periods can be esti-
mated on the basis of height measurements covering a period of more than
a month. Bottom pressure gauges have now been installed at chart sounding
points where such series of measurements. Relationships between these mea-
surements may obtained and heights recorded simultaneously at the nearest
reference station can be established and used to estimate probability laws
required for calculating extreme tide return periods at these points. Due
to spatial variability patterns in the studied phenomena, there should be
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enough of these sites in the sampling area to be able to interpolate these val-
ues for places throughout the study area. In some areas, charts are available
that present lines of equal extreme tidal heights.

An example of tidal height patterns for a 75 year return period is presented
for the Aroise Sea and the roadstead of Brest (figure 8.3). In this example,
all data available for this zone were processed for the purposes of mapping
extreme heights corresponding to the given return period.

Iroise Sea

Figure 8.3: Iroise Sea and the roadstead of Brest (France): chart of extreme tidal
heights corresponding to a 100 year return period. Heights are given relative to the
IGN 69 zero mark (in cm).
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4. Different mean tidal heights

Errors associated with obtained tidal height values can also be computed.
The results often highlight defects in tide recording networks and areas
where additional tidal measurements could be necessary.

4 • Different mean tidal heights

The mean level (often denoted ML) of the observed height h(t) is a rather
vague concept. Intuitively, it refers to a supposedly constant characteristic
quantity. However, by definition, ML values are fundamentally variable
because they depend on the centre time tn of the chosen timespan and the
duration T of the latter:

NMtn,T =
1

T

∫ tn+T/2

tn−T/2
h(t)dt (8.28)

Moreover, concerning tides, this ambiguity is accentuated by the fact that
the term ‘mean level’ is not attributed to the mean (8.28) of observed heights
h(t). The term is mainly applicable for data filtering and more complex than
the mathematical mean (8.28), which represents a special case of filtering
h(t) by the symmetrical rectangular frequency distribution of breadth T.

According to a well established tide monitoring practice, the mean level
can apply to the result of an operation on measured heights aimed at elimi-
nating the astronomical tide. This practice is used especially for determin-
ing different mean levels, including the daily mean height. The duration of a
mean solar day (24 h) is not exactly the tidal period (TM1 ≈ 2TM2 ≈ 24.84
h), as the simple mean of 24 hourly measurements leaves a residual contain-
ing tidal constituents that are very problematic for statistical analysis of the
daily mean level.

4.1 • Daily mean level

To gain insight into slow sea level variations, digital filtering of h(tn +

mte) measurements, sampled over a time step te(on each side of a time tn),
involves carrying out a so-called filtering operation, by:

h(tn) =

m=Mj∑
m=Mi

w(mte)h(tn −mte) (8.29)

where w(mte) is the filter w(t) sampled every te by the rectangular distribu-
tion of width (Mj−Mi)te centred on time (Mj+Mi)te/2, which is generally
different from zero.
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By applying this filter to the exponent e−j2pnt, we directly obtain the
transfer function FT(n):

FT(n) =

m=Mj∑
m=Mi

w(mte)e−j2pn(tn−mte)

The transfer function FT(n) should be true. This will only be the case if
the filter w(t) is symmetrical (even function) and sampled by a rectangular
distribution centred at the origin. This requires:
• firstly: w(mte) = w(−mte)

• secondly: Mi = −Mj = M, tn = 0
Where w(mte) and w(−mte) are respectively denoted by am and a−m (n.b.

am = a−m), the transfer function of a symmetrical digital filter may be
formulated as:

FT(n) = a0 + 2
m=M∑
m=1

am cos(2pnmte) (8.30)

As this involves a mean level calculation, the filter should accurately
restore a height that is constant (not time-dependent). The transfer function
must therefore be unity for zero frequency, or:

a0 + 2
m=M∑
m=1

am = 1

The filter can theoretically be attributed desired characteristics through
the choice of am coefficients. Let us assume, for instance, that we want a filter
whose transfer function (8.30) value is imposed at M points. One solution
would be to solve the system of M + 1 equations with M + 1 unknowns
so as to be able to calculate am coefficients. However, this procedure is not
realistic for calculating mean levels. The ideal filter would be a low pass filter
whose transfer function is a symmetrical rectangular frequency distribution
of width 2n0 in the freqency domain (n0 > 0).

Clearly, to dampen oscillations introduced by such a transfer function
between the imposed frequencies, the corresponding frequency can only be
approximated by a very high number of coefficients. However, each of these
coefficients is given an observed size. This means that to obtain an ideal filter,
it is necessary to take into account many observations on both sides of time
tn to which the filter is applied. A tradeoff is clearly required. First, we will
not necessarily attempt to approximate the ideal filter, but will preferentially
try to give it certain key features for the problem to solve. Eliminating tidal
constituents is one of our top priorities. Secondly, an upper limit is set for
the number of coefficients to take into account. An assessment of the filters
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proposed by different authors reveals an implicit consensus: the maximum
number of coefficients am(te = 1h) is set at Mmax+ 1 = 36. Like am = a−m,
this number of values enables filtering with the mean daily height being
attributed at noon of a given day, by taking measurements available for three
days into account (previous day, the current day, and the next day, or 72 h).

Table 8.3 gives the coefficients of different filters commonly used for the
computing main daily levels (n.b. these filters are symmetrical). The W25
filter is the mean of 25 hourly values. For the tidal period, which is closer
to 25 h than to 24 h, this filter is more efficient than the mean of 24 hourly
heights. Moreover, the calculation can be focused on noon every day. This
very easy to use filter is still less efficient than that of Doodson, which is just
as simple. Nowadays, with computer technology, the simplicity factor is no
longer important for calculating mean daily heights.

The efficiency of these filters is generally assessed on the basis of their abil-
ity to offset the tidal constituents. The main wave residual coefficients are
presented in Table 8.4. A comparison the these results with those deduced
from the reduced height method (RH, last column on Table 8.4) is instruc-
tive. This latter method is the only one to give residual coefficients of zero
for the main wave M2 and subsequent waves (M3, M4, M6, M8).

4.2 • Mean monthly and annual levels

Calculations of mean monthly and annual levels are simply derived from
arithmetic means of mean daily levels. These means are new filters that
dampen residue coefficients resulting from daily level filters. The new
residue coefficients are given in Table 8.4, (except for Sa and Mf ) multiplied
by the corresponding factors that are listed in Table 8.5, according to the
duration in days (d) of the month (28, 29, 30 or 30 d) or of the year (365
or 366 d).

As the means are established on an integer number of days, the solar
constituents are not dampened. However, since their phase at noon does
not vary, their residual is simply a constant term.

5 • Long-term mean level variations

Variations in the mean annual tidal level are the focus of very progressive
studies aimed at determining the long-term trends and relating them to
observed climate change patterns. This brief presentation is limited to
discussing the problem of observations and prediction, while examining the
possible causes and consequences.
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Table 8.3: The main digital filters used for calculation of mean daily levels from hourly
tide levels. The number of values taken into consideration for each filter is always odd,
i.e. 1+ 2mmax.

hour W25 Doodson Munk Godin Demerliac

m 25am 30am 107am 14 400am 24 576am

0 1 0 395 287 444 768

1 1 2 386 839 443 766

2 1 1 370 094 440 762

3 1 1 354 118 435 752

4 1 2 338 603 428 738

5 1 0 325 633 419 726

6 1 1 314 959 408 704

7 1 1 300 054 395 678

8 1 0 278 167 380 658

9 1 2 251 492 363 624

10 1 0 234 033 344 586

11 1 1 219 260 323 558

12 1 1 208 050 300 512

13 0 195 518 276 465

14 1 180 727 253 435

15 0 165 525 231 392

16 0 146 225 210 351

17 1 122 665 190 325

18 0 101 603 171 288

19 1 85 349 153 253

20 72 261 136 231

21 60 772 120 200

22 47 028 105 171

23 30 073 91 153

24 13 307 78 128

25 66 105

26 55 91

27 45 72

28 36 55

29 28 45

30 32

31 15 21

32 10 15

33 6 8

34 3 3

35 1 1
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Table 8.4: Residual coefficients for the main tidal waves obtained via the different
filters used for computation of the mean daily level.

waves W25 Doodson Munk Godin Demerliac RH

Q1 0.074 31 0.010 41 0.007 40 0.001 03 0.001 62 0.002 76

O1 0.032 80 0.002 99 0.001 41 0.000 19 0.000 43 0.003 38

P1 −0.037 38 −0.000 13 −0.000 96 0.000 00 0.000 00 −0.000 19

K1 −0.042 60 0.000 15 −0.000 74 0.000 00 0.000 00 −0.000 30

N2 −0.012 79 0.001 71 0.000 89 0.000 04 −0.000 16 −0.000 14

M2 0.006 42 -0.000 58 0.000 02 0.000 01 −0.000 04 0.000 00

S2 0.040 00 0.000 00 −0.000 20 0.000 00 0.000 00 0.000 84

K2 0.042 55 0.000 33 −0.000 15 0.000 00 0.000 00 0.001 06

M3 −0.006 50 −0.009 09 −0.000 08 0.000 01 0.000 04 0.000 00

M4 0.006 62 0.002 59 0.000 30 0.000 01 0.000 00

MS4 0.021 16 0.004 84 0.000 00 0.000 01 0.000 42

M6 0.006 99 −0.001 98 −0.000 39 0.000 01 −0.000 07 0.000 00

M8 0.007 55 −0.003 84 −0.000 06 0.000 01 −0.003 63 0.000 00

Table 8.5: Factors applied to daily residual coefficients (Table 8.4) of main waves
(except Sa and Mf) to obtain those corresponding to mean monthly levels (28, 29, 30
or 31 days) and annual levels (365 or 366 days).

waves 28 d 29 d 30 d 31 d 365 d 366 d

Sa 0.990 4 0.989 7 0.989 0 0.988 2 0.000 7 0.002 1

M f 0.024 3 0.057 0 0.084 5 0.105 9 0.009 3 0.007 3

Q1 0.003 7 0.031 1 0.060 2 0.081 0 0.000 9 0.001 9

O1 0.013 8 0.021 4 0.053 2 0.080 4 0.009 6 0.007 6

P1 0.990 4 0.989 7 0.989 0 0.988 2 0.000 7 0.002 1

K1 0.990 4 0.989 7 0.989 0 0.988 2 0.000 7 0.002 1

N2 0.030 2 0.005 6 0.038 4 0.065 2 0.000 9 0.001 9

M2 0.054 1 0.018 4 0.015 7 0.047 0 0.010 0 0.008 0

S2 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0

K2 0.961 8 0.959 1 0.956 2 0.953 3 0.000 7 0.002 1

M3 0.053 4 0.018 6 0.015 8 0.046 4 0.002 1 0.004 7

M4 0.052 4 0.018 7 0.016 0 0.045 7 0.006 5 0.006 4

MS4 0.054 1 0.018 4 0.015 7 0.047 0 0.010 0 0.008 0

M6 0.049 7 0.019 2 0.016 5 0.043 7 0.002 2 0.004 2

M8 0.045 8 0.020 0 0.017 2 0.040 7 0.001 3 0.001 7
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5.1 • Observations

Long-term tidal observations are essential for climate studies, especially
those that have been recorded at Brest since 1806.

Tide levels have been measured for almost 200 years at the Brest tide
monitoring station, which is a long enough period to document long-term
sea level variations (figure 8.4).
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Figure 8.4: Evolution of the mean annual sea level at Brest between 1806 and 1997.
Each point represents a mean annual level. Over this period of almost two centuries, a
regular trend of 1.13± 0.05 mm/year is noted, but without any obvious acceleration.

This example shows that there are relatively marked local variations in the
mean annual level, i.e. as high as or over±5 cm between years. This is why
at least a century of observations are necessary to be able to evaluate trends
with a good degree of accuracy.

At Brest, the mean level increased by 25 cm in 200 years. This example
is, however, not representative of all long-term observations available world-
wide. In most cases, these observations actually reveal a mean increase of
around 1-2 mm/year, with about the same extent of scatter around these val-
ues as that documented at Brest. There are sites, especially in Scandinavia,
where the reverse trend has been noted.

Otherwise, available observations do not provide an accurate indica-
tion of the overall trends because of the very irregular distribution of tide
monitoring stations, which are mostly located in temperate regions in the
Northern Hemisphere. The variability in the trend between sites is mainly
due to vertical crustal movements that tide gauges obviously cannot detect
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(measurement of relative levels). Tectonic movements can now be measured
by spatial imaging techniques, which are effective for monitoring levels of
various elements in marine or terrestrial environments relative to an abso-
lute reference frame.

Data logged by many satellites equipped with altimetric radar (especially
Topex-Poseidon since October 1992, and Jason since 2003) provide close
to centimetre measurement accuracy. The findings indicate that there has
been almost the same extent of increase in ocean levels as that mentioned
above for Brest. However, because of interannual variations, many years
of altimetric radar data collection would be required worldwide to reduce
the estimation error. The satellite data collected so far indicate very high
spatial variability in trends for periods of around a decade. Satellite-borne
radar altimeters have proven their reliability and the quality of the acquired
data has been improving year by year. Moreover, spatial geodesy techniques
make it possible to position (with centimetre accuracy) specific points on
the Earth’s surface via the International Terrestrial Reference System (ITRS),
which was adopted by the International Union of Geodesy and Geophysics
(IUGG). Tide gauge reference levels can be pegged to the ITRS through
operational systems such as GPS and D.

Sea level variations can now be monitored within an absolute reference
frame. International and national programmes are currently under way
to improve the precision of geodetic datums and models through spatial
imaging techniques. For the same reasons as those mentioned for altimetric
radar data, it will be several years before minable results will be obtained (for
the purposes of studying long-term sea level variations).

Finally, vertical crustal movements can also be detected on the basis of
measurements of gravity acceleration on the Earth’s surface. Devices have
been designed to detect gravity variations equivalent to height variations of
a few millimetres.

5.2 • Causes of long-term tidal variations

Altimetruc radar data currently indicate that the global sea level is rising,
but these measurements have not been obtained over a sufficiently long
period and they are not accurate enough to confirm any acceleration trends.
While awaiting further and more accurate measurement data, an analysis
of possible causes could help us gain insight into the phenomenon and
eventually predict how it will evolve.

The rise in sea level is generally attributed to global warming due to
the greenhouse effect, with atmospheric carbon dioxide being the main
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greenhouse gas. However, an analysis of Brest tidal records did not highlight
any acceleration in this trend associated with industrial development.

An analysis of data recorded on different paramters came up with the
following findings:
• the carbon dioxide concentration has increased by 25% since the begin-

ning of the industrial revolution, and it is currently increasing at a rate of
0.4-0.5% a year.
• the mean air temperature has risen by 0.5°C over the last century.
This warming impacts the sea level via different processes, especially

glacier and polar ice cap melting and the expansion of ocean surface layers.
Land movements also have an effect on ocean levels.

5.2.1 • Ice cap melting and thermal expansion of oceans

We make a distinction between mountain glaciers and ice caps (Antarctica
and Greenland) because of the differences in volume. The volume of water
retained in mountain glaciers is the equivalent of 30-50 cm in sea level. Their
melting has been responsible for boosting the sea level by 1-4 cm over the last
century, and could reach around 10 cm in the 21st century.

The ocean level would rise by around 87 m if all the ice caps were to melt
completely (80 m for Antarctica and 7 m for Greenland). The extent of
responsibility of the greenhouse effect in accelerating this phenomenon is
a highly controversial issue.

For Antarctica, following the catastrophic scenarios that were put forward
in the 1980s and widely covered in the media, estimated mean annual melt-
ing rates have been regularly declining. The possibility that the Western
Antarctic Ice Sheet will disappear, which fuelled this debate, is no longer
expected to occur before several centuries. Conversely, the volume of the
Antarctic ice cap seems to be increasing. This ice cap is generally subjected
to extreme negative temperatures during both winter and summer, so slight
warming of the atmosphere in this region would not induce substantial melt-
ing. Instead, a temperature increase would boost the humidity which in turn
would lead to more abundant snowfalls, thus increasing water storage in the
form of ice to the detriment of the ocean.

The atmosmhere above the Greenland ice cap is much colder than in
Antarctica. The northern ice cap should contribute positively to the evolu-
tion of the sea level despite the presence of a few stabilizing factors. How-
ever, the budget of contributions of the two ice caps would likely be slightly
negative.

Thermal expansion of the oceans (which oceanographers also call the
‘steric effect’) contributes to sea level variations. Atmospheric warming
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affects the ocean temperature by various physical processes, which are often
pooled under the term ocean-atmosphere interactions (radiation, evapora-
tion, precipitation, thermal conduction, etc.). An increase in temperature
in a 1 000 m thick marine water column of 1°C to 15°C would lead to a sea
level rise of around 16 cm. Homogenous warming of such a layer is, however,
unrealistic. Heat diffusion from the surface to the ocean depths is a com-
plex nonlinear process that should be considered in a broader framework of
thermohaline circulation on a World Ocean scale. This phenomenon could,
for instance, reduce deep-water production at high latitudes (Weddell Sea in
the Southern Ocean; Labrador and Greenland Seas in the Northern Hemi-
sphere).

Ocean warming is estimated to have been responsible for a 4± 2 cm level
rise over the last century.

5.2.2 • Crustal movements

Ground movements are of isostatic, tectonic and anthropogenic origin.
These vertical movements due to the ice weight or melting, which have

been documented on a scale of several thousands of years (corresponding
to glaciation/deglaciation cycles at high latitudes), have reached amplitudes
of several hundreds of metres. Even today it is very obvious that the ‘elastic
rebound’ following the last deglaciation (which ended over 7 000 years ago)
is under way. In the Gulf of Bothnia (Baltic Sea), the apparent sea level has
been declining by around a metre per century. An analysis of mean levels
seems to indicate a shift around a pivot running from Scotland to southern
Scandinavia. France could thus be faced with subsidence as a backlash to
this elastic rebound.

Human activities may also have very marked local impacts. This is the
case, for instance, in the Gulf of Mexico due to petroleum development,
which is inducing subsidence. Tapping of aquifers and river sediment com-
paction has aggravated the problem in the Mississippi Delta region.

5.3 • Forecasts and impacts

Forecasting of sea-level rises must be preceded by modelling studies that
take climate change patterns and especially air temperature increases into
account. There are, however, substantial uncertainties at this stage concern-
ing the estimation of the evolution of some factors (especially greenhouse
gas emissions) in the coming years.

Modelling development must be further pursued because current models
do not accurately account for past patterns. In fact, there is no real evidence
that current warming trends correspond to the onset of the greenhouse effect
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as predicted by present models. These models also foresee a certain degree of
polar warming, which has not been clearly documented. Conversely, some
circumpolar regions seem to be cooling off.

Predictions of an overall rise in sea level vary depending on when they
were published. Concerning forecasts for the year 2100, catastrophic sce-
narios were predicted in the early 1980s, with some published simulations
forecasting an overall rise of 3.5 m, but since then there has been a regular
downward adjustment in these estimates. Paradoxically, in the early 1990s a
quite marked increase in prediction uncertainty was noted, i.e. the discrep-
ancy between the highest and lowest predictions. It nevertheless seems that
this gap is narrowing, with a sea-level rise of around 50 cm now being pre-
dicted for 2100.

The conseqences of this sea-level rise are extremely wide ranging, and
it would be impossible to make an exhaustive assessment. Depending on
the amplitude of the phenomenon, these consequences will depend on the
type of coast, its topography and especially the population density along the
coastal fringe.

Severe erosion and groundwater salination can be expected to take place,
in addition to the submersion of currently out of reach areas.

We should nevertheless be wary of simplistic predictions because the
coast does not respond passively to sea-level rises. Coastal marshland veg-
etation and mangroves promote sedimentary accretion and may offset the
trends in some areas. Moreover, climate change can modify river flow
regimes and the sediment balance in coastal zones.

Dams and river flow management projects also often have serious impacts
on this balance. Beach recession, which is a common phenomenon, often
turns out to be the result of a sediment deficit, sometimes of natural ori-
gin, but too often due to human activities. Finally, it is important to be cau-
tious about blaming uncontrolled constructions and resource extractions for
causing sea-level rises.
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IX

Tidal datums and chart

soundings

Selection and determination of vertical datums and their corresponding
levels is a key problem in hydrography.

These are conventional problems, but the advent of associated new tech-
nologies, especially satellite monitoring and computer development, has sub-
stantially changed the ways of dealing with them.

New datums are now being considered as a result of the development of
satellite geopositioning systems (GPS/G/Galileo), satellite altimetry,
recognition of the International Terrestrial Reference Frame (ITRF) by the
entire geodetic research community, determination of the Earth’s global
gravity field with ever higher spatial resolution, and the development of
increasingly efficient computation of hydrodynamic models.

However, conventional tidal datums are still in use and their levels have to
be accurately referenced with respect to other datums.

Chart sounding reduction involves the correction of depths measured by
sounding systems with modeled but accurately determined depth, which
can be tied to the nautical chart datum, or so-called chart datum, with
enough accuracy to be suitable for navigational purposes. Two problems
are overcome in this operation:
• determining the chart datum for the geographical area of the survey

with respect to the selected datum.
• determining, relative to this datum, the sea surface elevation, which

varies according to the geographical position and time of sounding.
These problems are generally independent (even though the levels are

determined by the same measurement and processing methods – especially
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conventional and spatial methods which are both based on tidal analysis and
prediction) and are solved by different techniques.

1 • Definitions

The principles underlying sounding reduction are simple but can lead
to misinterpretation because the exact meanings of some of the terms are
unclear. Specifically, several different tidal datums are used in practice, and
must be clearly defined so as to be able to reference their levels with respect
to the others.

As measurements obtained by spatial techniques may differ from those
obtained by standard techniques, it is essential to define the datums and
rigorous reduction processes used in their determination.

1.1 • Chart datum characteristics

The chart datum, which is jointly used in nautical charts and tide tables,
has two basic characteristics:

It is defined on the basis of tide monitoring criteria to ensure the safest
possible navigation conditions: it is an estimation of the lowest possi-
ble astronomical tide, according to recommendations of the International
Hydrographic Organization (IHO), and its level is referenced relative to a
benchmark, or (conventionally) relative to a stable landmark located in the
vicinity of a tide gauge, or (henceforth) relative to a datum plane, so as to
ensure that it will remain valid in the long term, thus enabling consistent use
of readings obtained during different periods. The level of this datum plane
should be determined relative to an international reference frame such as
ITRF.

In the vicinity of coastal tide stations, these two problems are overcome
via tidal data analysis and by the fact that their levels can be determined rela-
tive to benchmarks located near tide gauges. The levels of these benchmarks
are in turn referenced with respect to terrestrial benchmark networks.

Offshore, tide models are required, which must be evaluated on the basis
of the ability to provide (for the chart datum) results that meet the quality
criteria required of all reference frames, i.e. accuracy, accessibility, stability
and accuracy.

1.2 • Lowest astronomical tide

According to the International Hydrographic Organization (IHO), the
chart datum should be as close as possible to the lowest astronomical tide
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level. The term ‘astronomical’ means that it is not a directly measured
level, but rather a level calculated from the tide-generating force due to the
gravitational attraction of the Moon and Sun. However, this astronomical
or predicted tide is generally calculated by an equation based on harmonic
constants determined by the analysis of preliminary tidal measurements.
There are two problems with this.

First, the computational accuracy varies markedly depending on the qual-
ity and duration of the observed measurement data, the correction (or not)
of meteorological and oceanographic effects, the computation methods and
means, and the tidal type and range.

Secondly, over and above this astronomical tide, tidal height variations
induced by other phenomena (non-astronomical, but meteorological and
oceanographical, for instance), as well as long-term sea level trends, come
into play during the measurement period. Hence, calculating it on the basis
of measurements obtained during different periods will give different results
with a significant rate of error.

Note that the idea of a lowest low water is intrinsically approximate and
directly linked with the mean sea level concept, as discussed hereafter. Since
the lowest LW is not accurate or stable, it cannot serve as an exact tidal height
reference for hydrographic applications. However, once calculated by the
harmonic equation, it can be used to determine the chart datum, which will
thus be ‘approximately’ the lowest astronomical tide level.

1.3 • Mean sea level (MSL) and mean sea surface (MSS)

The term ‘mean sea level’ (MSL) is ambiguous. It intuitively suggests a
constant level, whereas it is fundamentally variable because it depends on
the period of time for which it has been calculated. It is actually a mean
that is obtained by the following equation, where t1 and tN are dates of the
beginning and end of the tide recording period and h(tn) is the measured
sea level at time tn, with the height reference origin being fixed and the
time interval between measurements generally being constant and short in
comparison to the interval between successive HW and LW.

NMtN
t1
=

1

N

n=N∑
n=1

h(tn)

In practice (see Chap. VIII, §4), in the discussions on tides, MSL does
not refer to the true mean of the measured levels, but instead is the result of
a digital filtering operation (where the mean is just one particular aspect).
According to the established custom, the ‘instantaneous MSL’ is the result of
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an operation whereby the astronomical tide is subtracted from the measured
heights.

Instantaneous MSL(t) = (measured height at time t)−
∑

Ai cos(qit−ai)

By this definition, for statistical applications, the instantaneous MSL can
be considered as a random variable representing the free surface height with-
out periodic oscillations due to astronomical effects. The mean instanta-
neous MSL is more accurate than the simple tidal height mean because it
minimises periodic constituent residuals, which in any case are low over long
periods. The MSL for long periods is thus generally calculated on the basis
of the instantaneous MSL. The problem, however, is that regardless of the
time scale, even quite long (a few years), this random variable is not static
because the mean depends on the sample under consideration. This is clearly
illustrated in figure 8.4, which shows the long-term rise in mean annual tide
levels at Brest.

The MSL (for which the initial and final recording dates, and the compu-
tation method should be indicated) and the instantaneous MSL relative to a
benchmark, vary over time. Because of this variability, neither of these levels
can be taken as a vertical datum, which must be stable.

For tide forecasts, the MSL is calculated over the longest possible period
and is referenced to the terrestrial reference system and benchmarks. In
French this is referred to as the ‘nominal MSL’ (no distinction from MSL in
English). This calculation is done for sites where long-term tidal measure-
ments are recorded (several years if possible). These sites are called reference
stations.

When the harmonic equation is applied for sounding reduction, it is
assumed that the instantaneous MSL and the MSL, and thus also all other
mean levels, define parallel surfaces, whereas the instantaneous MSL is a
function of time, and the MSL relative to a terrestrial datum is constant.

The mean sea surface (MSS) is regularly mentioned hereafter, and this
level is calculated on the basis of satellite altimetry measurements. The ellip-
soidal height of the sea surface is averaged for each tracking position (after
applying various corrections, especially to eliminate the astronomical tide).
After interpolation to account for gaps in the satellite tracking coverage, the
result is presented as a mean surface, which is representative of the mean sea
level at each tracking position (at a resolution that depends on gaps in the
satellite tracks) during the monitoring period.

MSS cannot currently be measured in coastal areas by satellite altimetry.
The resolution is only a few dozens of kilometres, which still limits the use of
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this technology for hydrographic purposes.

1.4 • Geoids

A geoid is an equipotential surface in the gravity field of the Earth. It
is determined on land by geodetic levelling along with gravimetric mea-
surements. Tide gauge benchmarks are, when possible, related to a geoid,
in practice the land levelling network, which we call here the ‘on-land
geoid’.

In oceans, the same geoid can be extended via gravimetric measurements.
A good argument in favour of using a geoid as tidal datum is that the vertical
datum of mathematical models used to simulate the dynamics of oceans
is an equipotential in the gravity field of the Earth. At any position, the
local vertical is perpendicular to the geoid. One very common error is to
confuse it with the MSS. These two surfaces should be differentiated because,
relative to the geoid, MSS is affected by phenomena that we refer to as
‘meteorological and oceanic’. This includes, for instance, the general ocean
circulation (hence, at a latitude of 45°, a current of 1 m/s over a breadth of
10 km creates a height difference of 10 cm perpendicular to the current), the
mean density distribution, atmospheric pressure gradients and nonlinear
tide propagation effects in shallow areas. The nonlinear effects (e.g. in the
Channel) alone can induce errors of as much as 10 cm (figure 9.1).

The geoid used as the initial surface in simulation models also differs
from the on-land geoid. The geoid at sea is an equipotential of the gravity
field that closely corresponds to a homogeneous ocean surface at rest, with
a density equivalent to the mean density of the ocean at time zero, and
subjected to an atmosphere, which is also homogeneous and at rest. We will
call this the ‘ocean geoid’, which is determined almost like the on-land geoid,
which is usually calibrated with respect to the mean sea level, but sometimes
measured at a past date and a remote position. However, it does not coincide
with it (if only because of secular evolution of the sea level), and the errors,
which cannot currently be accurately measured, could be as much as several
tens of centimetres, which is excessive for hydrographic applications and for
studying ocean circulation.

Using the harmonic tidal equation, it is possible to determine the lowest
astronomical tide level, and thus the chart datum, relative to the mean sea
level over the considered period. In practice, and in models, variations in
harmonic constants as a function of variations in the mean sea level are neg-
ligible. This is essential for chart datum determination and sounding reduc-
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1. Definitions

tion by the so-called conventional method because it almost completely over-
comes mean sea level errors.

A complete digital model should make it possible to determine the chart
datum relative to the ocean geoid, which is the vertical reference of the
model. In practice, however, this is hard to do because it requires a simu-
lation spanning several years while taking the external meteorological and
oceanographic effects noted above into account (excluding nonlinear tidal
effects that are readily taken into account by models). Moreover, relative dif-
ferences in the mean sea level and geoid are not clearly defined at the open
boundaries of models, thus hampering simulation of induced residual circu-
lation and corresponding height variations.

To be able to apply such models to vast areas using the ocean geoid
as benchmark, this geoid must be accurately calibrated in a terrestrial (or
spatial) reference frame, and all MSS variations relative to the ocean geoid
must be accurately (cm) determined. We are still far from having this
knowledge, although progress has been achieved through spatial techniques
(including gravimetric analysis) and modelling.

1.5 • Ellipsoid and ITRF

A reference ellipsoid is a mathematical surface defining a geodetic system
from relative positions of points located on the Earth’s surface. The stabil-
ity of this reference, like any other geodetic datum, depends on the num-
ber and geographical distribution of points that define it and on the range
of techniques used to locate these points. The advantage of an ellipsoid is
that it is a practical datum, especially for certain satellite techniques, i.e. in
altimetry. According to 1991 IUGG and IAG recommendations, the Inter-
national Terrestrial Reference System (ITRS), from which the International
Terrestrial Reference Frame (ITRF) was created, should be used for all appli-
cations requiring better than metre accuracy. Although WGS84, the refer-
ence coordinate system used by GPS, is more popular, the 1991 recommen-
dations are still relevant because ITRS is implemented from a very dense
geographic coverage of several hundreds of points, as compared to around
20 for WGS84, and using different techniques (VLBI, SLR, GPS, D),
as compared to a single one for WGS84 (GPS). In practice, the results of
applying the two systems are quite similar, but ITRS is conceptually inde-
pendent of the technique and all performance-proven techniques can con-
tribute. Please note that this text is additional to the French but provides
a pertinent update. Future advances and new positioning systems (Galileo,
etc.) should not be overlooked. Another argument in favour of ITRS (as if
another were needed) concerns the fact that it is maintained and improved
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IX. Tidal datums and chart soundings

by the international community and is therefore independent of organiza-
tions and countries but dependent on an internatinal scientific association,
i.e. the International Association of Geodesy (IAG), and benefits from its
scientific seal of approval.

1.6 • Terrestrial reference frames and levelling

In ports, the chart datum and MSL are represented by their levels rela-
tive to benchmarks. These benchmarks are located in the vicinity of the tide
gauge, and there are enough marks, and marks spaced far enough apart, to
ensure that they could not all be destroyed at once, e.g. during harbour work.
The elevations of these benchmarks are ranked with respect to other bench-
marks by geodetic levelling and, if possible, tied to the national levelling net-
work. Note that the chart datum is not defined by its level in the national lev-
elling network. The chart datum cannot be put in question by successive lev-
elling operations, which may generate different results because of changes in
measurement techniques, as well as vertical (tectonic or seismic) movements
of the Earth. Moreover, the tidal load itself may induce vertical movements
(periodic, like the tide) of reference frames (e.g. relative to the geoid) of over
20 cm. These movements are not very significant locally for hydrographic
applications since they involve movement of the entire seabed, which is nat-
urally accounted for in tide measurements and models, but for some appli-
cations these movements have to be taken into account to ensure centimetre
accuracy when spatial techniques are used.

2 • Accuracy

There are two aspects to the accuracy concept. A distinction must be
made between accuracy resulting from relatively close compliance with the
definition (lowest low water), and the accuracy of the level in a reference
frame.

There is an arbitrary aspect to the definition of the chart datum, which
gives some degree of freedom, as shown by the range of definitions currently
in use. Adopting the lowest low water level is basically a facility to enable
navigators to readily determine the charted depth that has to be taken into
account for tidal purposes, but the accuracy of the chart datum determina-
tion relative to the lowest low water is not a crucial criterion, i.e. it may be
acceptible that the charted depth is ‘approximately’ related to the lowest low
water, as often noted on navigational charts.
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The second aspect of the accuracy concept concerns determining the
chart datum. Once adopted, it should be referenced in an accessible stable
datum. This is very important because a chart datum must be absolutely
stable to qualify as a recognized vertical datum. Levels of coastal tide stations
must be determined very carefully with respect to datums so as not to be
challenged in successive levelling operations. Millimetre accuracy, which is
usually authorized in conventional levelling operations, should be targeted.
This extent of accuracy is obviously unnecessary for maritime navigation,
but essential for evaluating the datum stability, and especially for some
studies on sea level variations.

3 • Accessibility

Access to a vertical datum is the main problem encountered far from
coastal tide stations.

3.1 • Conventional method

The surface and seabed are the two immediately accessible surfaces for
conventional chart sounding. The seabed can be used, but minimally, to
find the chart datum in the vicinity of a tide gauge whose benchmarks have
disappeared. In practice, for conventional soundings, the surface is the only
accessible reference, which obviously has the drawback of not being stable,
so it can only serve as a temporary datum.

The conventional procedure is based on the concordance method (see
Chap. VII,2), which models the correspondence between tides at two adja-
cent points by linear regression. It can also be accomplished with geometric
levelling in order to relate the sea level to the tidal heights to known bench-
marks that are generally installed on the coast in the vicinity of tide gauges.
This involves locating the chart datum relative to the sea surface at the mea-
surement site and time using harmonic constants derived from a tidal model
and the lag which is assumed to be constant in the space between the MSL
and the intantaneous MSL. An improved procedure, but not implemented
in practice (soundings are generally acquired in calm weather), would be to
use a model that includes meteorological effects. This would also certainly
enhance the accuracy at sites remote from a reference station, e.g. mean
instantaneous currents generated by the wind can induce substantial surface
slopes (1 cm/10 km is quite common, see 1.4). This reasoning could also
apply for density variations, which can be quite marked, especially at river
mouths.
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Modelling1 is used to first calculate an instantaneous astronomical tidal
height at sounding points relative to the mean sea level.

AS(L, G, t) =
∑

i

Asi cos[qit − asi(L, G)]

It is also used to determine the nominal mean height NS(L, G) relative
to the lowest LW. As this height is constant at a given point, it is calculated
initially on the basis of the charted lowest LW relative to the mean sea level,
obtained by digital modelling, as exemplified in figure 9.8.

Hence, at the sounding point, we obtain the astronomical tidal height
relative to the lowest LW:

HAS(L, G, t) = NS(L, G)+ AS(L, G, t)

To determine the surface level relative to the chart datum, this value must
be corrected to account for errors in tide prediction due to meteorological
and oceanographic effects, and for a potential error between the chart datum
and the lowest LW at the nearest reference station. This latter correction
is applied to avoid irregularities in the sounding values on charts as the
offshore distance from the reference station increases.

dhR is the tide prediction error at the reference station. This is the
error between the measured and predicted tides. Because of the process
used to compute the instantaneous MSL, it is also the error between the
instantaneous MSL and the MSL and, as noted earlier, this error is assumed
to be spatially constant. This correction is thus applied at the sounding point
and symbolised by dh.

Otherwise dZR is the level of the lowest LW at the reference station relative
to the chart datum. A non-zero value is generally the result of a previous
(and possibly not very accurate) determination and of a secular change in the
MSL. dZS(L, G), i.e. the hydrographic lowest LW level at a sounding point, is
often determined using an agreement in height, which comes to almost the
same result when solving:

dZS

dZR
=

NS

NR

where NR is the MSL relative to the lowest LW at the reference station, or

AR(t) =
∑

i

ARi cos(qit − aRi)

1. Le S currently (2005) uses the T model, which is described in Hydrody-
namique des écoulements à surface libre (Modélisation numérique avec la méthode des éléments
finis), Jean-Michel Hervouet, Presses de l’ENPC, 2003.
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is the astronomical tidal level at the reference station R, relative to the MSL,
and MM(t) is the height measured at the tide gauge relative to the chart
datum.

Sounding point S

corrected level

calculated level
calculated level

measured level

Mean sea level

Lowest low water
lowest low water

Chart datum Chart datum

Reference station R

∆Z S

∆Z R

∆h

Ns(L, G) NR

AR(t)

HM(t)

∆h

AS(L,G,t)

HAS(L,G,t)

ZOR

H(L,G,t)

ZOS

Figure 9.2: Conventional sounding correction method.

Based on the notations given in figure 9.2, sounding reduction is done by
calculating the sea level H(L, G, t) at the sounding point S by the following
equation:

H(L, G, t) = HAS(L, G, t)+HM(t)− [AR(t)+NR + dZR]+ dZR
NS(L, G)

NR

Where S is the sounding measurement (height), the level Z to be indicated
on the chart (reduced height) is:

Z = S−H(L, G, t)

Note that AS, AR, NS, and NR are related to the mean sea level (MSL),
which can thus be considered as a datum. However, the absolute positioning
of this datum has little impact on the soundings because the MSL is used to
determine the position of the chart datum relative to the lowest astronomical
tidal level and to calculate the astronomical tide in R, as well as the effects
of lags in S on these levels are almost cancelled out. If MSL is shifted by a
magnitude DN, the level of the lowest astronomical LW shifts to the same
extent, while dzR is increased by the same quantity and dh, measured in
R, varies by −DN. In S, the chart datum is shifted by DN · (NS/NR). The
shift in HAS(L, G, t), thus in the sounding height Z (N.b. dh in S and in R
are equal to −DN), is thus DN(NS − NR)/NR. This lag is negligible if the
tidal ranges in R and S are close. However, if these ranges are not close, the
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error remains low as long as we do not stray too far from the true values
(unknown) and the selected chart datum is close to the lowest astronomical
LW, e.g. for DN = 20 cm, which is substantial2, and for a relative variation
of (NS − NR)/NR of 10 %, then DH = 2 cm, which is acceptible.

A major effect of this practice should be noted, i.e. a potential error
between the chart datum and the lowest LW for a reference station may
be related to the sounding point. There is no problem if this error is low,
but if it is high difficulties could arise when there is a change of reference
station. SHOM has thus set up ‘tide zones’ for the main coastal ports
of France. Another problem concerns the possible remoteness from the
reference station, which may markedly reduce the accuracy of the method
in correcting meteorological and oceanographic effects relative to dh.

The procedure could be improved by using tide pressure gauges that are
set on the seabed in the sounding area. If a month of tidal observations are
available, the so-called species concordance method can be used to obtain
an astronomical tide that is accurate enough for this offshore sounding
point to serve as a reference station and thus, because of its nearness, to
obtain a better correction for meteorological and oceanographic effects.
First, however, it is necessary to determine the chart datum at the sounding
point relative to the instrumental datum of the submerged tide gauge.

As the above-described method enables determination of the chart datum
relative to the MSL, its level must be determined with respect to the instru-
mental datum. This is done by using an approximation of the parallelism
of various mean surfaces between the reference station and the submerged
tide gauge. This is better verified for an MSL calculated over a defined time
period than for an instantaneous MSL (there may be bias that is undetectable
over this period). Submerged tide gauges also make it possible to ensure the
validity of the tide model used. Once the instrumental MSL of a submerged
tide gauge is calculated during the sampling period, it is corrected for the
error between the MSL during the same period and the MSL of the reference
station.

The use of submerged tide gauges therefore does not overcome the need
for tidal observations at reference stations. They do not solve the problem
of tidal zones, but they do partially offset the meteorological and oceano-
graphic effects.

2. The low relative variations in MSL for close by ports in relation to the terrestrial geoid (a
few centimetres) confirms that achieving only a 20 cm error is very unlikely, especially since
many of these levels were determined for very different periods.
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3.2 • Spatial techniques

Spatial techniques offer a different solution to the sounding reduction
problem.

First, it is now possible to accurately determine the level of the seabed in
a terrestrial reference frame without considering the sea level, and therefore
without using a tidal model. This means that it is an absolute and permanent
determination, which is a key advantage of using spatial techniques. This
determination currently cannot be performed in real time in a global refer-
ence frame (e.g. ITRS) but, when located in the in the vicinity of an on-land
reference station, it is possible to make an accurate determination relative to
this station.

For accuracy, seabed movements also have to be taken into account. These
movements can be considered as identical within an area of a few tens
of kilometers for Earth tides, but not for seabed movements induced by
oceanic loading, for which gradients of around 1 cm/10 km have already
been noted3. Contrary to the conventional method where the tidal model
(calibrated on the basis of measurements along the coast and offshore, which
encompass movements on the sea surface as well as seabed movements) also
compensates for seabed movements, the spatial method, even in some small
areas, must take these into account to remain accurate.

It is also possible to accurately position the mean sea surface (MSS)
obtained by altimetry in a geodetic reference frame (ellipsoid). Satisfactory
results have already been obtained with Topex-Poseidon data, and further
progress should be possible with Jason altimetry. The accuracy degrades in
the vicinity of coasts because of the low resolution (10 km) and unaccounted
for consideration of land masses in the computations. However, it is possi-
ble to overcome these drawbacks by benefitting from tidal measurements
obtained in these coastal areas and pegging them to an accurate geodetic
datum. As for the conventional method, the chart datum should also be
determined in current local reference frames (tidal zones) on the basis of
the MSL. This involves correcting the MSS for errors between the calculated
MSL of the reference tide gauge during the altimetric sampling period and
MSL and applying the tide modelling correctors in order to position the
chart datum at all points in the tidal zone. The ellipsoidal height of chart
datum is deduced from the known ellipsoidal height of the MSS. The base-
line datum is always the chart datum of the reference station.

3. cf. La surcharge océanique, by Françoise Duquenne, ESGT, January 2001.
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Note that, at the current state of the knowledge and as mentioned with
respect to the conventional method, the tidal model used should be cali-
brated relative to data on sea surface and seabed movement so as to guaran-
tee the sounding accuracy. This is the simplest method. For maximum accu-
racy, all surface and seabed movements must be modelled by taking all the
effects into account: astronomical tides, meteorological and oceanographic
conditions.

It could be quite possible to achieve continuous determination of the chart
datum over broad surface areas by increasing the measurement and mod-
elling accuracy. However, we are obliged to work in the current cartographic
reference frame, which is based on tidal zones. All charts would have to be
updated to have a continuous chart datum, but this task would likely take
decades to achieve because it is very complex and no hydrographic service
has sufficient resources to be able to conduct a substantially quicker update.

Based on the notations in figure 9.3: EMSS = MSS ellipsoidal level deter-
mined by altimetry. The problem is to determine the seabed ellipsoidal level
EF (one of the IHO recommendations), as well as the depth of the seabed
below chart datum Z.

On the basis of figure 9.3, the following results can be readily obtained:

EF = EGPS − S

Z = EMSS − EF − (dZS + NS + dNS)

EGPS, S and EMSS are measured values. Figure 9.5 gives an example of EMSS
values for French coastal regions obtained from Topex-Poseidon altimetry
data.

One key advantage of this method is that the sea surface height in a ter-
restrial reference frame is not part (even implicitly) of the previous equa-
tion, thus eliminating problems associated with tide forecasting (except with
respect to determination of the lowest LW and substantial seabed move-
ments) and with meteorological and oceanographic effects.

As noted in the previous chapter, dZS is obtained by the following equa-
tion:

dZS = dZR
NS

NR

NS and NR are obtained using harmonic constants derived from marine tidal
models and observations at the reference station. Figure 9.8 gives an example
for the Channel. dNS is the difference between the MSL and MSS at the
sounding point. With the mean surfaces being approximately parallel to one
another, then dNS = dNR where dNR, at the reference station, is the error
between the mean sea level calculated from observations covering the period
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δNS

δZR
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δZS

Z
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Figure 9.3: Sounding correction–spatial technique.
dNS: difference between the MSL and MSS at the sounding point
NS: MSL relative to the lowest LW at the sounding point
dZS: lowest LW level below chart datum at the sounding point
Z: seabed depth below chart datum at the sounding point
EF: seabed ellipsoidal level
EGPS: sea surface ellipsoidal level as measured by GPS
S: depth measured by the depth finder
dNR: difference beween the MSL and MSS at the reference station
NR: MSL relative to the lowest LW at the reference station
dZR: lowest LW level below chart datum at the reference station
ERMSS: MSS ellipsoidal level at the reference station
ER: tide gauge benchmark ellipsoidal level
ZR: tide gauge benchmark level below chart datum
Z00: MSL below chart datum.

from which the MSS was determined, and the MSL. All elements included in
the equation for determining Z are thus available.

There is still one problem due to the inaccuracy of altimetric measure-
ments close to coasts, but it can be overcome by also using accurate tide
station geodetic measurements, thus offering the possibility of interpolation.
Because of this inaccuracy, for instance, the ERMSS ellipsoidal level at the
reference station cannot be obtained by altimetry, but the tide gauge bench-
mark ellipsoidal level ER can be determined via geodetic measurements
obtained at the tide station, and then the following equation may be applied:

ERMSS = ER − ZR + dZR + NR + dNR
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4 • Stability

The question that comes to mind when considering the stability of bench-
marks is, ‘stability relative to what’? The answer generally depends on
the problem at hand. Concerning stability in hydrographical applications,
although there may be some differences in sounding values, they cannot be
questioned since they may be the result of changes made to the reference
level. This applies especially to the stability of physical benchmarks whose
level relative to the chart datum is accurately established.

We have seen earlier that excellent accuracy in determining the lowest
low water is not essential, but once it is set, the chart datum defines it very
precisely and (excluding an unusual accidental event) definitively, indepen-
dently of a subsequent and potentially more accurate determination of the
lowest low water. It is important that a more permanent charting be carried
out to avoid successive subsequent determinations. However, this stability
rule is often disobeyed with the seemingly commendable aim of improving
the accuracy.

To ensure datum stability, the lowest astronomical tide level should not be
calculated when new observations are obtained, but should rather be deter-
mined via permanent global charting, even though it can be determined
through harmonic constants. However, this rule is seldom respected due
to the lack of confidence in the quality of models, and especially since it is
generally acknowledged that this quality is rapidly improving with advances
in computation methods. There is also a problem of compatibility with
neighbouring countries. Ideally, a common model should be adopted, but
attempts in this direction by the Tidal Working Group of the North Sea
Hydrographic Commission revealed the many stumbling blocks in the way
to reaching a trade off. Meanwhile, the best short- to medium-term option
would likely be to make adjustments at the boundaries of areas of responsi-
bility. The lowest astronomical tide level is charted relative to the mean mod-
elled level which, as noted previously and within the true value range, has
little impact on harmonic constants (which are used to calculate the lowest
astronomical tide level).

4.1 • Conventional methods

Through conventional chart datum positioning procedures, the mean sea
level (MSL) has taken on the status of vertical datum. For its offshore
accessibility, a model is used to calculate its level relative to the sea surface
at the place and at the sounding time (based on the assumption that dh is
spatially constant at the sounding time).
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The stability of the MSL as vertical datum does not concern the accuracy
of its level relative to the sea level (which actually reflects the extent of
sounding reduction uncertainty), but instead concerns the relevance of the
choice of this reference surface for solving sounding reduction problems.
Note first that tide gauge benchmarks serve as vertical datums for coastal
tide stations. This is suitable because potential vertical movements are likely
to closely match those affecting nearby coastal areas. This also applies to the
MSL whose level relative to coastal benchmarks is constant.

Note, however, that due to reduction procedures, potential tide gauge
vertical movements have an impact on the stability of the vertical datum
at remote points where vertical seabed movements may not be identical to
those of the tide gauge. This problem can only be properly solved by tak-
ing the geodetic positioning of coastal tide gauges around the sounding area
into account and by modelling potential movements offshore and on land.
Finally, when submerged tide gauges are used, another stability problem con-
cerns a possible slow change in the mean slope of the water column between
the sounding area and the reference station, which is not detected during
the sampling period. Future systems (as a follow up to ongoing research) for
coastal modelling of combined meteorological and oceanographic impacts
should make it possible to quantify this slope.

Chart sounding correction is the only issue dealt with here, but it should
be kept in mind that the ultimate goal is to fulfil navigators’ needs since
they usually only have access to tidal predictions relative to the MSL not to
the instantaneous MSL. Using the so-called ‘inverse barometer correction’
recommended in tide tables makes it possible to improve the accuracy, but
it would be better to have access to the dh value (difference between the
instantaneous MSL and the MSL) measured by the tide gauge, as carried out
by pilotage services in certain ports.

4.2 • Spatial techniques

As demonstrated above with respect to spatial geodetic datums, ITRS is
preferred over WGS 84 due to the enhanced reference ellipsoid stability. To
establish the chart datum, it is still necessary to have access to a local MSL
(extended via the MSS, and translated to fit the MSL at the reference station),
as long as current tidal zones apply, and the MSS (determined over a long
and well chosen period) when a general continuous chart datum comes into
effect. However the MSL is now losing its datum status because the low-
est low water – after having been situated within the ellipsoidal reference
frame – acquires the status of chart datum with a permanently set ellipsoidal
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height, thus overcoming the datum stability problem. Then the question
of the validity of the selected ellipsoidal datum arises because, contrary to
the MSL which is based on benchmarks, ellipsoid datums are unaffected by
potential vertical benchmark movements, which in turn can bias the sound-
ing values. When possible, a geodetic survey of nearby vertical tide gauge
benchmark movements (which should be accounted for in different ITRS
operations) should be undertaken, while also modelling seabed movements,
when this technique is adopted.

5 • Conclusion: modelling implementation
recommendations

Chart sounding reduction problems arise mainly when coastal tide sta-
tions are not nearby. Tide modelling is necessary in this case. Modelling
helps to situate the chart datum within an on-land reference frame. Once
this datum is fixed, other techniques can be used to determine tidal heights,
e.g. kinematic GPS (with its accurate ephemeris) or other more specific
models.

In the vicinity of tide gauges, the chart datum relative to benchmarks is
seldom challenged, even after a potentially more accurate determination of
the lowest low water. This avoids having to add the uncertainty concerning
the datum position to the tidal height uncertainty (relative to benchmarks).
Offshore, depending on the technique used, the mean sea level or ellipsoid
are fundamental reference levels. For the same reason as put forward with
respect to establishing the chart datum of coastal tide stations, the zero
mark should be permanently set relative to these datums. The problem is
presented in this way because of the current performaces of digital models,
i.e. it is possible to determine the lowest low water accurately enough to
define the chart datum. Hence, the question arises as to the performance
required to be able to use the model for this purpose.

Determination of the chart datum also obviously depends on its definition,
i.e. normally the lowest astronomical tide level. There are two options:
• either the model provides the low water level for various spring tide

situations and the lowest low water is extrapolated
• or the model provides harmonic constants to enable calculation of the

extreme lowest low water.
These two solutions are not equivalent because, for the first option, the

lowest low water related to the model datum, i.e. a geoid if a mathematical
model is involved, while the harmonic equation is the reference for the latter
option, i.e. the mean sea level.
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Note: as discussed in section 1.4, variations in harmonic constants as a
function of variations in the mean sea level are insignificant in practice, so it
is not possible to have access to an accurately determined mean sea level.

The second option is the only applicable approach nowadays because
extrapolations are sometimes risky, the marine geoid is not very accurately
determined and meteorological and oceanographic effects have yet to be
sufficiently accurately modelled.

It is not necessary to know the exact ‘true’ mean sea level when determin-
ing the reduction by the conventional method. Moreover, computations by
the spatial method can be based on absolute MSS measurements (models of
meteorological and oceangographic effects can help in solving interpolation
problems in the vicinity of coasts, while also enhancing MSS validation).

Previous experience with modelling tides in the Channel indicates the
type of information that can be obtained via such techniques, i.e. har-
monic constants can be calculated from a standard list at each of the 25 000
(approx.) grid points of the model based on 1-year tidal simulations. These
constants are corrected so as to closely correspond to already established con-
stants, according to their degrees of confidence.

The lowest astronomical tides are calculated for each grid point of the
model using the harmonic method.

The level of accuracy that may be achieved by this technique is around 1%
of the tidal range. This magnitude seems reasonable and should be adopted
as the standard, based on the following rule: if the lowest low water cannot
be determined closer than N cm (typical value: 10 cm), the chart datum
will be lowered to a level that (considering the extent of uncertainty in its
determination) is at least as low as the lowest astronomical tide. The mean
sea level is generally rising along the French coasts, so the safety margin
cannot be any broader.

6 • Methods

In this chapter, we only describe the principles of the chart sounding
reduction methods, since their practical use is described in hydrography
manuals.

6.1 • Cotidal range charts

Figure 9.4 shows a chart that can be used for offshore sounding correction,
with a grid of lines of equal high water ranges and times in the Channel.
This type of chart is used in addition to tidal observations in reference
stations. Where K(L, G) represents the ratio of ranges on the tidal chart
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Figure 9.4: Cotidal chart for the English Channel. Blue co-range lines run between
points of equivalent tidal ranges (spring tide here), while red co-time lines run between
points where high waters are reached at the same time.

at point (L, G) and at the reference station, and u(L, G) is the lag, which
is also deduced from reading the chart. The method involves applying the
following equation:

h(t, L, G) = K(L, G)[hR(t − u(L, G))]+ C(L, G)

C(L, G) is a constant lag when the sounding datums are all in agreement
(see Chap. VII, § 2.1). It is zero if they are in agreement with the chart datum
of the reference station.

This process is based on the assumption that tides are similar at all points
in the sounding area, so it cannot be applied in areas far from the reference
station where there may be substantial nonlinear effects. The method is
improved by using different cotidal range charts, e.g. a mean spring tide
chart and a mean neap tide chart. Better results can also be obtained when
tidal stations are located close to the sounding area.

One drawback of this method is that it requires slow and tedious manual
processes, and the results are not always sufficiently accurate, especially for
sounding in shallow areas with a substantial tidal fall.
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6.2 • Harmonic method

The harmonic method tailored for sounding reduction involves applying
the following equation:

h(t, L, G) = NM(L, G)+

i=N∑
i=1

hi(L, G) cos[Vi(t)− Gi(L, G)]

hi(L, G)

Gi(L, G)

}
harmonic constants

Z0(L, G) mean sea level

Vi(t) astronomical argument

N number of harmonic constituents

The problem is thus to determine the harmonic constants for all points.
Two methods are used: having a sufficiently dense network of tidal sta-

tions in the area and, when possible, calculating the constants for all points
simply by spatial interpolation; or modelling the area so as to be able to cal-
culate the constants for all points.

6.2.1 • Spatial interpolation

Figure 9.5 shows tide recording points along the coasts of France. Most
offshore recording points do not store more than a month of tidal records.
However, it is possible to take full advantage of these data by using the species
concordance method based on harmonic constants and simultaneous obser-
vations from the nearest reference station. Considering the spatial variabil-
ity in the constants, the density of recording points is generally considered
to be suitable enough to, by interpolation, generate the harmonic constants
required for accurate astronomical tide calculation. Figure 9.7 shows the
results obtained by this method for the M2 wave.

6.2.2 • Modelling

Dealing with the problem from a strictly physical standpoint, whereby
hydrodynamic equations are solved directly in a tidal wave propagation
environment, is not a new concept. However, it was not until the advent of
high-performance computers that it could be applied in practice. It involves
dividing the domain into geometrically simple elements called grids, and
then applying the following basic principles to them:
• the conservation principle, whereby water height variations in a grid

are the result of the difference between the quantity of water entering the
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Figure 9.5: Position of tide recording points.

grid and that which exits through the sides. This difference depends only on
currents passing through the grid
• the fundamental principle of dynamics, whereby current velocity varia-

tions in a grid depend on external forces affecting a continuous water column
in the grid. There are three types of such forces:

— pressure forces due to differences in water height in neighbouring
grids

— Coriolis forces due to the Earth’s rotation which tend, in the North-
ern Hemisphere, to deflect the current to the right

— braking forces, similar to friction, which affect movement near the
grid bottom and walls.
The result of applying these principles is that water height and current

velocity variations in a grid depend on the water heights and currents in
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neighbouring grids. All grids are interdependent, so the problem of height
and current variations should be solved globally in the entire study domain.

Movements cannot occur, however, unless there is a driving force, i.e. the
tide at the model open boundaries, i.e. where there is no coastline. This
imposed movement propagates between grids throughout the domain.

Calculations are done at regular intervals, or so-called time steps, starting
from a steady state. The results can only be used after a stabilization period
which, in practice, corresponds to two to three tidal cycles.

In practice, grids are square, rectangular or triangular. The choice of grid
size is crucial, i.e. the smaller it is, the higher the resolution and thus the
higher the accuracy in the results. On the other hand, the smaller the grids,
the more numerous they are within a given domain.

The time step is not independent of the grid size, i.e. digital instability
may occur when the time step is too long. A reduction in the grid size can
thus considerably increase the computation time, so a reasonable trade off is
generally sought.

Depth information is another major restriction. It would be unreason-
able to wish to enhance the resolution of a model if the description of the
environment is not done on an equivalent scale. From this standpoint, nav-
igational charts do not supply bathymetric information suitable for hydro-
dynamic modelling. This depends on the choice of depth finders, whose
main function is to generate information useful for navigational safety. Infor-
mation density is often sacrificed to enhance the clarity of the charts, while
highlighting topographical features that could be dangerous for navigation,
which may distort the seabed representation.

Figure 9.6 shows an example of a grid used for modelling tides in the
western Channel region.

It should be noted that despite the progress achieved through high-
performance computers, the level of accuracy obtained by digital models is
not sufficient to meet chart sounding reduction needs. The results often have
to be fitted to the observation data. Marked progress should be achieved in
this field through assimilation techniques.

The theoretical tide at all grid points can be readily determined through
1-year tidal simulations, followed by calculation of harmonic constants at all
grid points.

Figure 9.7 provides an example of results obtained for the M2 wave in the
Channel. Charts on the left represent situations in degrees (relative in ref-
erence to Universal Time), while those on the right show tidal ranges (in
cm). The top charts were obtained by simulation, the middle charts repre-
sent interpolations, while those on the bottom are the result of a model fit.
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Figure 9.6: Western Channel grid. This so-called finite elements grid can improve
computations where necessary.

All harmonic constituents that are usually calculated for a year can be
obtained in this way.

6.2.3 • Mean sea level

Z0(L, G) is the mean sea level (MSL) as discussed earlier (see 1.3). It
depends on the datum, which is theoretically the lowest low water but actu-
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Figure 9.7: Modelling the M2 wave in the Channel.

ally a level close to this. In order to adopt a datum in line with that of the
reference station, at the sounding point, the difference dZ between the low-
est low water and the chart datum of the reference station is carried forward
to the sounding point. One way of doing this is to apply the harmonic equa-
tion for the lowest theoretical tide time, i.e. tbm(L, G) at the sounding point
and tbm(LR, GR) at the reference station.

z0(L, G)

= z0(LR, GR)+

i=N∑
i=1

Ai(LR, GR) cos
{

Vi[tbm(LR, GR)− Gi(LR, GR)]
}

︸ ︷︷ ︸
dz

−

i=N∑
i=1

Ai(L, G) cos{Vi[tbm(L, G)− Gi(L, G)]}
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A 19-year tidal prediction is often used to determine the time of the lowest
theoretical tide. This method is not accurate because, contrary to common
opinion, the lunar node rotation period is not the tidal period. Rather
than looking for the time of the minimum tide, it would be preferable to
determine the value of the astronomical parameters corresponding to this
minimum using the method described in Chapter VIII, 2.

z0(L, G) =

z0(LR, GR)+

i=N∑
i=1

Ai(LR, GR) cos{Vimin(LR, GR)− Gi(LR, GR)}︸ ︷︷ ︸
dz

−

i=N∑
i=1

Ai(L, G) cos{Vimin(L, G)}

6.2.4 • Tide prediction errors

Meteorological conditions can cause marked differences between the the-
oretical tide and the true tidal height. Since no model is available to estimate
this error, the method used involves carrying forward errors measured at
the reference station to the sounding point. Obviously, by this method, the
results obtained for sounding points far from the reference station may not
be very accurate. This problem can be quite effectively overcome by using
tide pressure gauges. They are submerged in the sounding area for long
enough to calculate reliable harmonic constants, and can be used as inter-
mediary reference stations to obtain more reliable estimations of tidal pre-
diction error corrections to be applied.

Figure 9.2 illustrates how procedures for computing the mean sea level
and tidal prediction error corrections are applied. It implies that the chart
datum correction and the tidal prediction error correction are included in
the same operation. This apparent simplification gives rise to a fundamental
problem of stability of the vertical reference since a potentially variable
water column slope between the reference station and the sounding point
is reflected in the mean sea level.

7 • Digital models and spatial techniques

The conventional methods described in the previous chapters are not fully
satisfactory. There are some practical drawbacks (setting up tide gauges),
along with other more fundamental drawbacks concerning the accuracy of
the results. Particularly, the fact that the chart datum is determined for each
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point according to the measured data raises a question as to the permanence
of the datum.

7.1 • Digital models

A very important hydrological application of digital modelling concerns
charting of the lowest low water relative to the MSL, as exemplified in
figure 9.8.
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Figure 9.8: Lowest low water relative to the mean sea level.

Even the most complex digital model is not perfect, but the inaccuracy
can be acceptable if it is calculated and disseminated. This type of charting
can then be used to set the chart datum zero mark and thus ensure its
appropriate stability. The mean sea level (see 1.3) is then implicitely the
fundamental datum. The fact that the tidal prediction error correction
is independent of the chart datum determination is a major advance with
respect to conventional methods, for which the zero mark inaccuracy is part
of the error budget.

7.2 • Spatial techniques: kinematic GPS and the mean sea surface

Research to take advantage of the possibilities offered by spatial tech-
niques has facilitated the development of new chart sounding correction
techniques. Kinematic GPS can be used to measure height in the ITRS
(with 10 cm accuracy) on a moving platform, which is in line with stan-
dards required for bathymetric surveys. Moreover, spatial altimetry pro-
vides the mean sea surface (MSS), which can also be referenced to the ITRS
(figure 9.9). When the the chart datum is determined relative to the mean sea
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level through hydrodynamic modelling (figure 9.8), it is possible to position
the chart datum in the ITRS (figure 9.10), and thus determine the position of
the moving platform relative to the chart datum. Once this principle is estab-
lished, a few implementation problems arise, mainly due to the inaccuracy
of the MSS close to the coast. The best is to take the geodetic position of the
tide gauges into account so as to facilitate interpolation.

Various studies have confirmed the validity of this approach, while high-
lighting the progress that could be expected in improving the MSS and in
setting up tide stations so as to bridge certain gaps.

Note however that high accuracy is not required when positioning the
chart datum in the ITRS. It just has to be situated in the vicinity of the lowest
low water, but it is important that:
• this datum be jointly used in tide tables and navigational charts
• its level cannot be changed once it is set.
These techniques have been perfected and represent substantial progress,

but they can only be gradually adopted for operational applications because
of the need to develop complex digital models, to gain skills in operating the
appropriate equipment, and to encourage changes in fixed habits.
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Figure 9.9: Mean sea surface obtained by spatial altimetry and referenced to the IRTS.
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Figure 9.10: Lowest low water referenced to the ITRS.
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Tidal streams

Some water movements in ocean coastal regions have the same frequen-
cies as constituents of the tide-generating potential. They are called tidal
streams. Note however that, like the tidal height, these streams have two dis-
tinct origins:
• so-called ‘gravitational’ tidal streams: these are derived from the tide-

generating force, which is mainly caused by Newtonian attraction
• so-called ‘radiational’ currents: these are the result of the effects of solar

radiation on daily or seasonal cycles through all ocean-atmosphere interac-
tions (pressure field, wind conditions, density of the sea surface layers).

1 • General features

Here we have limited the study of tidal streams to coastal regions based,
in principle, on the assumption that the water density is identical from the
surface to the seabed. It is also assumed that the stream velocity is constant
throughout the water column, except in the layer at the sea bed where friction
reduces the velocity. Note also that the issue of internal waves with the same
frequency as the tides is not covered in this manual.

1.1 • Radiational currents

These currents can be subdivided into three principal constituents:
• a ‘permanent’ constituent resulting from the mean distribution of mete-

orological and oceanic systems on the Earth’s surface; this permanence is
relative as it is based on a mean that depends on the measurement period
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X. Tidal streams

• a periodic constituent due to the succession of seasons, which can
be interpreted as a cyclic modulation (of solar origin) of the permanent
constituent
• a more or less random but sometimes predictable (via observations and

models) nonperiodic constituent that is driven by meteorological events or
ocean dynamics (topographic Rossby waves).

Ocean currents are weak in the vicinity of coasts. However, those influ-
enced by bathymetric features (straits and oceanic channels) can be as strong
as 5 knots, for example the Gulf Stream between Florida and the Bahama
Grand Banks. In this tidal manual, these residual currents are just men-
tioned for the record. Note simply that they impact tidal stream measure-
ments (as they seldom last more than a few months) by fluctuations with
sometimes substantial residual constituents, and several ocean dynamics
processes must be considered in the interpretation. In the absence of other
information, it is difficult to determine whether a measured residual cur-
rent is permanent, due to a seasonal variations or to temporary meteoro-
logical and oceanographic effects. The wind especially has a marked local
effect. It accounts for around 3% of the current velocity and, a few kilome-
tres from the coast in the presence of a seasonal thermocline, produces so-
called inertial currents whose period is a function of the latitude L and equal
to TIn = 12/ sin L sidereal hours. The wind action induces considerable
noise which, considering the short duration of measurements that are gener-
ally available, can considerably hamper detection of tidal constituents on the
continental plate (e.g. in the North Sea).

1.2 • Tidal streams

The velocity of tidal streams is often extreme and sometimes very high
near coasts, i.e. 10 knots or more in some areas with a marked tidal range
and very rough seabed. This tidal phenomenon has a clearly identified
gravitiational origin and is caused by variations in the tide-generating force
due to relative motions of the Earth, Moon and Sun.

This action of celestial bodies can be identified and analysed according to
current measurements recorded at one place over a sufficiently long period
(at least 15 days). Since the causes always generate the same effects, and
based on knowledge of celestial body movements, tidal streams can be
calculated and predicted from the results of this analysis. For a long time,
many documents on tidal streams for navigators focused on this technique,
and it is still the main source of information for tidal stream tables on
navigational charts.
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However, for this procedure, good quality measurements are required
over a sufficiently long period to be able to identify and eliminate meteo-
rological effects and evaluate the gravitational constituents as accurately as
possible. It is often hard and costly to acquire such measurements in places
of interest for marine navigation, such as navigation channels or zones with
strong currents. Current meters are expensive, hard to anchor and recover,
so the write-off rate is often high. Hence there are often not enough measure-
ment data or tidal stream sampling points, and there is little hope that this
situation will improve in the immediate future at the present tidal stream
monitoring rate.

1.3 • Tidal stream measurements and use

Navigators nevertheless had to rely on this source of information for a
very long time. Past publications pooled knowledge gained over the years,
often conveyed by navigators. This knowledge is presented in the form of
texts describing tidal stream flow patterns in specific areas, and charts on
which these streams are indicated by arrows. This information is mainly
qualitative but still valuable, and most of it has been reviewed in recent
publications.

The oldest known book published on tidal streams is the Thresoor der
Zeevaert (‘Treasure of Navigation’), which was published in 1590 by Lucas
Waghenaër, marine pilot for the town of Enchuysen. According to Keller
(in a document on tidal stream flow patterns, 1855), “this remarkable book,
which is much better than anything present day pilots would be capable of
writing”, must have been written at a time then there was Spanish shipping
in the region because of the Spanish rule over Holland.

Halley’s work on tidal streams in the Channel was of high quality for the
time (18th century), but not popular amongst navigators. No further stud-
ies were published until around 1830, when observations from previous cen-
turies had been completely forgotten. Since no instruments were available
for recording tidal stream measurements, these works were based mainly on
the analysis of slack water patterns relative to reference station high waters.

Thereafter, especially as of the end of the 19th century, various types of
instruments were used. These were generally equipped with a compass and
a propeller-driven revolution counter, e.g. the device of E. Mayer (1877) for
which the revolution counter was blocked at the end of the measurement by a
messenger dispatched along the cable supporting the current meter. The best
known and most commonly used instrument is that developed by Ekman
in 1932. Two messengers dispatched along the support cable controlled the
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X. Tidal streams

beginning and end of the measurement, while the measurement duration
was determined by a timer. This instrument included a stock of small metal
beads that were released every 33 propeller turns and channelled by a small
trough supported by the compass. These metal beads ended up in one of
the 36 slots regularly distributed along a circular support under the compass
(angular slot width: 10°). This instrument generated very high quality
measurements, with a mean measurement vector and a crosscheck of the
number of propeller turns (counter and number of beads). However, with
these manual devices, a boat and an operator were required at the measuring
site, so they were hard to implement for long-term measurements.

A very broad range of measurement techniques were used and it would
be irrelevant here to draw up an exhaustive list. We should nevertheless
mention the Pitot tube, which was first used in 1932. At that time the most
widely used method involved a rotor associated with a compass, but it is
hard to determine the exact date when the first recording instrument was
developed based on this principle. One of the most efficient instruments
designed is called a ‘Doppler profiler’. Depending on the power of its
transducer, this device can measure the velocities and directions of various
ocean layers from the surface to depths of several hundreds of metres.

Several recording systems have also been used, but it is only highly self-
sufficient instruments that are capable of logging long-term current mea-
surements. This includes the electric recording device of Sverdrup and Dahl
(1918-1925), the vertical log current metre of Carruthers (1933) and photo-
graphic recording instruments, which were relatively reliable. These stream-
lined devices, which were naturally oriented in the set of the current, were
fitted with a camera that photographed the compass direction and the pro-
peller revolution count at regular intervals. However, the individual mea-
surement quality was not as good as could be obtained with an Ekman cur-
rent meter. These techniques are now obsolete. Modern instruments rely
on sophisticated electronic and computer technology for measurement and
recording, with a power capacity that can sometimes enable them to remain
self-sufficient for over a year.

For many years, current measurement processing was quite rudimentary,
with information supplied to navigators consisting of hourly indications of
tidal stream velocities and directions at mean spring and neap tides relative
to HW at a reference station. Such information can be readily obtained from
measurements recorded around mean spring and neap tides to meet this
need. Computer progress did not markedly modify these methods.

Figure 10.1 shows an example of a tidal stream chart drawn up on the basis
of such measurements. Tidal streams are represented by arrows emanating
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X. Tidal streams

from the measurement point. The two values shown above each arrow
represent velocities (expressed in tenths of a knot) corresponding to mean
spring tide and mean neap tide conditions, respectively. For a given area,
13 values are presented, corresponding to hourly values from 6 h before to
6 h after HW (sometimes LW) at a reference station.

Spatiotemporal interpolations are required for tidal stream evaluation
(velocity and direction) at a given point from a set of such charts. It seems
obvious, especially when comparing these charts with the more recent ones
presented later (figure 10.3), that such interpolations do not always generate
accurate results. Dead reckoning navigation on the basis of such data could
be extremely risky.

1.4 • Present trends: hydrodynamic modelling

Shortcomings in conventional documents on tidal streams have never
been overlooked, but ways to remedy them have only recently been devel-
oped thanks to advances in hydrodynamic modelling using computer com-
putation technology. Tidal streams can thus be directly calculated by hydro-
dynamic equations through digital modelling. The capacity of a model to cal-
culate tidal streams in an area is limited almost only by the power of the com-
puter used, the accuracy of the bathymetry and the information on bound-
ary conditions in the target area.

The hydrodynamic modelling principles are discussed in Chapter IX,
6.2.2. Figure 10.2 shows the resolution that can be achieved using finite ele-
ment models. It should be noted, however, that it would be of little interest to
use a high-resolution grid if the environmental and bathymetric features, in
particular, have not been determined on the same scale. Recall, for instance,
that navigational charts are unsuitable for digital modelling because they
mainly contain information that is useful for navigational safety without an
objective representation of the seabed.

Atlases drawn up using this type of model provide more information than
conventional atlases drawn up only on the basis of occasional measurements.

Figure 10.3 clearly shows, by comparison with figure 10.1 (in which
only measurement results are represented), the improvements that can be
achieved by digital modelling. Because of the strong tidal streams around
the islands of Sein and Ouessant, it is impossible to obtain direct measur-
ments, so no information is shown on the conventional chart (figure 10.1).
In contrast, the modelling results clearly show the strength of the tidal
streams, especially in Fromveur Channel (SE of Ouessant) and Sein Strait
(figure 10.3). Digital modelling is therefore essential for charting tidal
streams in such areas.
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Morlaix Bay

Treberden Port

Figure 10.2: Examples of grids used to draw up a current atlas in studied regions with
digital models. These charts represent two coastal areas along the Brittany coast of
France: the Granit Rose coast (top) and Morlaix Bay (bottom). The grid segment sizes
range from a few tens to several hundreds of metres.

The development of digital models has led to higher spatial resolution
which allows the bathymetry to be taken into full account. This procedure
has considerably improved the accuracy of the results. Direct measurements
are still necessary, but they are mainly only used to calibrate the models.
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3 H  BEFORE  HW  AT  BREST

Figure 10.3: Tidal stream charts generated by digital modelling for the tip of Brittany
(France): areas concerning the islands of Ouessant (chart A) and Sein (chart B).

Moreover, with recent models, subsequent fitting of measured data and
modelling data is no longer as crucial as it was for the initial models.
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1.5 • Digital tidal stream data

The models generate data on all hydrodynamic parameters (especially
tidal streams and heights) for each grid point. For obvious reasons of clarity,
all calculated values cannot be presented on tidal stream charts. There is an
inevitable loss of information in some zones even when navigational charts
on different scales are proposed.

The use of these documents is markedly simplified, but information per-
taining to given times is not shown. Spatial interpolations are almost use-
less because of the density of arrows presented on the charts, but temporal
interpolations are still necessary to be able to calculate tidal streams at given
times.

The procedure can presently be accelerated thanks to advanced computer
technology. Data on parameters derived from digital tidal stream models
can now be processed on ships to obtain specific information using tailored
software.
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Figure 10.4: The Channel: maximum velocity field of tidal streams at mean spring
tide.

A basic software program that simulates the tidal stream velocity and
direction at all places and times can be supplemented with other specific
software programs in order to fulfil various needs, e.g. routeing. Figure 10.4
shows an example of a by-product chart that has no specific application, but
which could be of interest for various marine activities.
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X. Tidal streams

2 • Tidal streams: definitions and features

Flood and ebb tidal streams can be differentiated in vertical oscillations of
the sea level during a tidal cycle. Moreover, the flood stream, or flood tide*
and the ebb stream, or ebb tide*, can be identified in horizontal oscillations
in water particles.

Tidal streams are either either reversing (rectilinear) or turning (rotatory).
In the former case, the flood stream direction is almost constant throughout
its duration (about a half tidal cycle). This direction is almost the opposite of
that of the ebb stream throughout its duration. In the latter case, the current
vector is gyratory during a tidal cycle. Its velocity never declines to zero and
may vary over a broad range.

In cases when the extreme velocities vary markedly, there is often a slight
variation in direction when the tidal stream velocity is relatively high and
a high variation in direction when the velocity is relatively low. These are
intermediary streams that are called ‘almost reversing’ or ‘slightly turning’
depending on the situation.

The tide occurs in the form of a progressive wave when no obstacles are in
the way: high waters (or low waters) advance at velocity c, depending on the
depth H, according to the equation c =

√
gH, where g represents the acceler-

ation of gravity. In the presence of an obstacle (e.g. a coast), the constituent
of the wave perpendicular to the obstacle gives rise to a reflected wave that, by
interferring with the incident part, generates a stationary constituent. The
HW time relative to a pure stationary wave (velocity perpendicular to the
coast) is identical over a broad area, and only the amplitude varies according
to the site.

With progressive waves, the flood stream accompanies the HW and flows
in the direction of tidal wave propagation. It begins at half flood tide, reaches
maximum at HW and ends at half ebb tide when flood tide slack water
(stream reversal) takes place. The ebb stream is the prevailing reverse stream.
It begins at half ebb tide, peaks at LW, and ends at half flood tide when ebb
tide slack water (stream reversal) takes place.

With stationary waves, the flood stream accompanies the flood tide. It
reaches maximum at half flood tide and ends at HW when flood tide slack
water (stream reversal) takes place. The ebb stream accompanies the ebb tide
and reaches maximum at half ebb tide and ends at LW when ebb tide slack
water (stream reversal) takes place. These tidal stream features are generally
noted in the vicinity of coasts.

The hydraulic tidal stream phenomenon that accompanies height varia-
tions in bays and estuaries resembles a stationary wave: the flood stream
flows upstream and corresponds to the filling. It is maximum around half
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flood tide, when the flood rate is highest. The ebb stream is the reverse phe-
nomenon. The flood tide slack water occurs around HW and the ebb tide
slack water occurs around LW.

A good example of a progressive wave is in the Channel where the tidal
wave propagates from west to east. At Cherbourg, half way between the two
coasts, the maximum eastward flow stream occurs almost simultaneously
with HW time at Cherbourg while the maximum ebb stream occurs around
LW. However, closer to the coast, stream reversals tend to be near slack water.

These stationary and progressive waves generally tend to overlap and may
flow in different directions. In such conditions, the streams are sometimes
turning, where:
• the flood stream, which flows in the direction of incident wave propa-

gation, begins between LW and half flood tide, and then peaks between half
flood tide and HW
• the flood stream, which flows in the reverse direction, begins between

HW and half ebb tide, and then peaks between half ebb tide and LW.
Stream reversals tend to occur around flood tide slack water, marking

the end of the flood tide. They also take place around ebb tide slack water,
marking the end of the ebb tide. Considering the term ‘slack water’, a
distinction should be made between stream slack waters (end of flood or ebb
streams) and tidal slack waters (high and low waters).

Times of stream reversals and maximum flood and ebb streams are respec-
tively staggered by clearly determined time intervals relative to the HW time
at a suitably chosen reference station. In other words, the tidal stream is in
the same phase at different times relative to the HW time at the reference
station.

There is sometimes a slight stream phase lag at the seabed relative to the
surface stream. However, this phenomenon does not apply in the vicinity of
the mouth of tidal rivers where the flood stream at the seabed is generally
established before the surface stream.

During both spring and neap tides, tidal stream directions usually have
identical values for the same reference station tidal times. However, this does
not always apply around stream reversal, when the stream direction changes
very quickly. If only one tidal stream direction is referred to in a document,
unless otherwise indicated, it refers to the direction of the mean spring tide.

In terms of tide monitoring, the amplitude of a tidal stream is the maxi-
mum velocity reached during a tidal cycle. This velocity varies depending on
the depth and height of tide. Its variation with respect to depth is especially
marked near the seabed because of the turbulent flow induced by friction,
which leads to a decrease in the mean velocity.
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X. Tidal streams

Depending on the tidal wave propagation mode, i.e. progressive wave,
stationary wave or a basin hydraulic filling/emptying phenomenon, the
tidal stream amplitude will not vary to the same extent at different tidal
heights. It would also be hard to describe a general rule to correlate the
stream amplitude with the tidal height. However, for navigational needs,
experience has shown that the amplitude of the stream VC, corresponding
to the tidal coefficient C, can be obtained on the basis of data on spring
tide VST and neap tide VNT stream amplitudes by the following first-order
approximation:

VC = VNT +
C− 45

50
(VST − VNT)

In case of reversing streams, the modulus of stream V(t) can be estimated
at a given time t by applying the so-called rule of sixths, which is analogous
to the rule of twelfths for tidal heights. This rule of sixths is based on the
implicit assumption that velocity variations are sinusoidal. For semidiurnal
tides, where VC denotes the amplitude (maximum velocity of the reversing
stream during a semidiurnal cycle) and the stream slack water time (t = 0)
is the reference time, we thus obtain:
• 3 h before slack water (t = −3 h), the velocity is maximum: V(−3) =

VC
• 2 h before (t = −2 h), V(−2) = (5/6)VC, or (1/6)VC less than V(−3)

• 1 h before (t = −1 h), V(−1) = (1/2)VC, or (2/6)VC less than V(−2)

• at slack water (t = 0), the stream is zero before reversal (change of
stream direction), V(0) = 0, or (3/6)VC less than V(−1)

• 1 h after slack water (t = 1 h), V(1) = (1/2)VC, or (3/6)VC more than
V(0)

• 2 h after (t = 2 h), V(2) = (5/6)VC, or (2/6)VC more than V(1)

• 3 h after (t = 3 h), the stream is again at maximum velocity, but in the
opposite direction from that at t = −3 h, V(3) = VC, or (1/6)VC more than
V(2).

3 • Tidal streams: analytical approach

Movements associated with tides comply with fundamental laws of ocean
dynamics. For fluids, these include:
• laws of thermodynamics with respect to salt and heat conservation
• an equation of state, with the sea water density depending on the salinity,

temperature and pressure
• the principle of conservation of mass
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• and, finally, the principle of conservation of momentum.

3.1 • The linear approach: long-wave equation

For a simple analytical approach to the behaviour of tidal waves, salt
and heat flows which are the source of so-called thermohaline streams are
disregarded. The sea water density r is also considered to be constant (HW
r ≈ 1.03 t/m3), and the fluid is assumed to be incompressible. According
the these hypotheses, the law of conservation of mass, which is formulated
as:

∂r/∂t +
−→
∇ · (r

−→
V ) = ∂r/∂t + r

−→
∇ ·
−→
V = 0

is reduced to the simple equation:
−→
∇ ·
−→
V ≡ div

−→
V = 0 (10.1)

where
−→
V is the velocity of the fluids, of constituents (u, v, w) in an orthonor-

mal system Oxyz (with axis Oz being oriented according to the local vertical
of the place)
−→
∇ is the gradient operator vector of constituents(

∂

∂x
,

∂

∂y
,

∂

∂z

)
−→
∇ ·
−→
V is their scalar product expressing the divergence of

−→
V .

In our tide-generating force computation (Chap. III § 1.1), we formulated
an equation for the absolute acceleration−→gS(M) of a liquid object M of unit
mass located on the Earth’s surface. Moreover, when disregarding the viscos-
ity (turbulence and bottom friction) and the advection and vertical acceler-
ation terms (hydrostatic pressure hypothesis), we get back to Laplace’s equa-
tions (4.1 and 4.2a or the equivalent 4.2.b), which we recall hereafter.

The first one (4.1) represents the continuity equation (10.1) of a water
column H(x, y) at level h(x, y, t) of the ocean surface (with h� H), or:

−→
∇h · (H

−→
Vh)+ ∂h/∂t = 0 (10.2)

where
−→
V h is the horizontal part of

−→
V , which is the same throughout the entire

depth (as the vertical constituent w is negligible, the velocity
−→
V h is identical

from the surface to the seabed at a given place)
−→
∇h the vector of the horizontal gradient operator of constituents

(∂/∂x, ∂/∂y).
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The second equation expresses the horizontal movement of a liquid, or:

∂
−→
Vh

∂t
+ 2−→vT ∧

−→
Vh = ∇h(U− gh) (10.3)

where
−→
vT is the Earth rotation vector

∇h is the horizontal gradient operator of a scalar (∂/∂x+ ∂/∂y)

U is the tide-generating potential of a unit mass

p/r = gh is the pressure disturbance on a particle of unit mass induced
by variations in h(x, y, t).

In 1879, Kelvin used the system of equations (10.2) and (10.3) to study
long wavelength free waves in an ocean basin while disregarding the poten-
tial (U = 0).

Were
−→
zM denotes the unit vector of the upward vertical at point M (latitude

L), we have seen that the Coriolis parameter f can be expressed by:

f = 2−→vT ·
−→
zM = 2vT sin L

where vT is the Earth rotation vector modulus (f takes the sign of the latitude,
i.e. positive in the Northern and negative in the Southern Hemispheres).

For information only, internal waves at tidal frequencies are only involved
in the dissipation process if qi ≥

∣∣f ∣∣. This process is not present throughout
the World. Hence, for internal waves associated with the major constituents
M2 and K1, dissipative zones are defined by specific latitudes:
• LM2 = ±74°28(f = ±qM2)
• LK1 = ±30°00(f = ±qK1)
Based on Kelvin’s hypotheses, equation (10.3) then becomes:

∂
−→
Vh

∂t
+ f
−→
zM ∧

−→
Vh = −g∇hh (10.4)

In the orthonormal reference frame described above, and based on the
assumption that f and H are constant, the free wave motion factor could be
explained by the following system of equations:

∂u

∂t
− fv = −g

∂h

∂x
(10.5a)

∂v

∂t
− fu = −g

∂h

∂y
(10.5b)

∂u

∂x
+

∂v

∂y
+

1

H

∂h

∂t
= 0 (10.5c)
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By differentiating (10.5a) relative to x, (10.5b) relative to y, and (10.5c)
relative to z, we obtain:

∂2
h

∂t2 + f H

(
∂v

∂x
+

∂u

∂y

)
+ gH

(
∂h

2

∂x2 +
∂h

2

∂y2

)
(10.5d)

Based on various simplifying hypotheses, these equations – even when
they have no nonlinear terms – can only be solved when there are simple
geometric configurations. They can still, nevertheless, generate some gen-
eral information.

3.2 • Simplified model: narrow channel of infinite length

A narrow channel of constant depth and infinite length is oriented in the
direction Ox. Equation (10.5) is reduced to:

∂2
h

∂t2 − c2 ∂2
h

∂x2 = 0 (10.6)

where:

c =
√

gH

The solutions are independent of coordinate y and the Coriolis force.
When function h(x, t) = h(x)ejqt is a specific solution of equation (10.6),
and the height h(x) depends only on the x-axis, and where k = q/c, we
have:

∂2
h(x)

∂x2 + k2
h(x) = 0 (10.7)

The general solution of this latter second-order differential equation can
be formulated as:

h(x) = hd

(
e−jk x

+ rejk x
)

(10.8)

where hd is the amplitude of the height of the direct wave (x = ct) and
the dimensionless parameter r is the reflection coefficient (which can be a
complex number). Equation (10.8) can also be formulated in the following
form:

h(x) = hd

[
(1− r)e−jk x

+ 2r cos kx
]

(10.9)

When taking equation (10.5a) into account with f = 0, the following
expression is obtained for the velocity:

u(x, t) = c
hd

H

[
(1− r) e−jk x

− j2r sin kx
]

ejq t, and the amplitude at point x
is:

u(x) = c
hd

H

[
(1− r) e−jk x

− j2r sin kx
]

(10.10)
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For a progressive wave (r = 0) propagating at velocity c =
√

gH, we thus
obtain:

r = 0⇒
u(x)

h(x)
=

c

H
=

√
g

H

Note that the previous equation gives the equality:

u(x)/c = h(x)/H

Progressive waves thus have the following features (figure 10.5):
• the tidal stream and height are in phase
• the flood stream is maximum at HW and flows in the tidal wave propa-

gation direction
• the ebb stream is maximum at LW and flows in the opposite direction
• stream reversals occur at half-tide times.
This is of interest in terms of setting so-called ‘radiational conditions’

at open boundaries of digital models in order to avoid noise created by
reflection from these boundaries.

3.3 • Stationary waves

V = 1⇒
u(x)

h(x)
= −i

√
g

H
tan kx

The tidal stream and height are in quadrature:
• The flood stream flowing in the incident wave direction is maximum at

half flood tide.
• The ebb stream flowing in the reflected wave direction is maximum at

half ebb tide.

wave propagation direction

flood tide

ebb tide

half-tide

flood stream reversal ebb stream reversal

Figure 10.5: A progressive wave: the maximum stream that accompanies the HW
in the tidal wave propagation direction, and that accompanies the LW in the reverse
direction.
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4. Current roses and harmonic constants

• Flood stream reversal occurs at HW.
• Ebb stream reversal occurs at LW.

3.4 • True tidal streams

Tidal waves are obviously never strictly progressive or stationary, but
this simple approach can still help explain certain observed phenomena
of considerable practical interest. When tidal wave propagation has been
clearly identified, as is generally possible far from the coasts, the flood
stream accompanies the HW and the ebb stream accompanies the LW. Near
coasts, however, stream reversals tend to be around HW and LW slack waters,
with the maximum flood stream occurring around half flood tide and the
maximum ebb stream taking place around half ebb tide.

The two constituents can coexist far from the coasts and the tidal stream
is generally not strictly a reversing stream–the stream vector describes a
hodograph that is called a ‘current rose’.

4 • Current roses and harmonic constants

As tidal streams have the same origin as the tide itself, analytical meth-
ods described for tidal heights can be applied without modification. How-
ever, stream measurements have specific features that have to be taken into
account. In particular, they are often noisier than height measurements, and
measurement periods are seldom longer than 15 days. However, it is gener-
ally not as important to achieve high accuracy.

4.1 • Data analysis

The tidal stream vector can be represented by a complex number. Apart
from this difference, methods designed for the analysis of tide levels can
be applied without modification. However, the short measurement time
is detrimental to the data analysis, i.e. there are too few observations to
be able to reliably determine the harmonic constants, which are always
calculated by the least squares method. A negligible redundancy level will
generate excessive degrees of freedom for the system to resolve and boost
the susceptibility to noise, thus upsetting the tidal stream measurements to
a greater extent than the height measurements.

The easiest way to limit the impact of noise is to reduce the number
of degrees of freedom by setting additional constraints on the harmonic
constants. These constraints – although not directly derived from the tide
measurements – should be important from a physical standpoint to enhance
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X. Tidal streams

the relevance of the results. The species concordance method disucussed
in Chapter VII § 3 is especially well adapted for this, and the following two
points should be mentioned:
• tidal heights and streams are correlated
• long-term tide measurements are easier to carry out and suitable for

standard data analysis procedures.
To take advantage of these observations, we assume that the tidal stream

is in concordance with the tide in the spectral domain. This is in line with
the species concordance technique used for analysis of short tide monitor-
ing periods. To tailor this technique for tidal streams, it would nevertheless
be preferable to slightly modify the reduced height computations (Chap. VI,
§ 2) in order to reduce the impact of noise between tidal frequencies, i.e.
parabolic interpolation on tidal heights is replaced by third-degree polyno-
mial interpolation on tidal stream vectors.

4.2 • Tidal stream harmonic constants

A tidal stream harmonic constituent can be represented by a complex
number:

G = u cos (V− Gu)+ jv cos (V− Gv) (10.11)

where u, Gu, v, and Gv are the amplitudes and phase lags of east-west and
south-north constituents of a tidal stream harmonic constant.

The hodograph of G is an ellipse.
What are called tidal stream harmonic constants are typical elements of

this ellipse:
• half major axis a
• half minor axis b
• major axis orientation bc
• phase lag G.
Navigators generally measure the orientation of the major axis clockwise

starting from the north. In compliance with mathematical practices, in the
following computations we assume:

w =
p

2
− bc

We can state:

G = ejw [
a cos (V− G)+ jb sin (V− G)

]
(10.12)

where we recognise the parametric representation of an ellipse in a complex
plane, and a rotation of a w angle is applied.
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tidal times

–6

+6

+5

EBB TIDE

–5 –4

–3

ebb stream 
reversal

stream vector 
30 min before HW

–2

–1

HW

EAST

+1

+2

+3

+4�ood stream 
reversal

NORTH

direction

velocity

1 knot

�ood tide

CURRENT ROSE

Figure 10.6: Hodograph of the tidal stream vector, called a current rose. The tidal
times are rounded off to the hour relative to the HW.

G is the phase lag of the wave. It is the maximum stream lag relative to
the maximum of the corresponding potential constituent. However, there
is one ambiguous aspect, i.e. since the stream modulus passes through two
maxima during a cycle, the major axis must be oriented so as to select one of
them.

The following conditions apply to this formulation:

−
p

2
<w <

p

2
a > 0

a >
∣∣b∣∣

As the hodograph can turn in a clockwise direction, b can be negative.
The problem is to identify equations (10.13) and (10.14).
Expansion of equation (10.13) gives the following result:

G =
1

2

{
u
[

ej(V−Gu)
+ e−j(V−Gu)

]
+ jv

[
ej(V−Gv) + e−j(V−Gv)

]}
=

1

2

[(
ue−jGu + j ve−jGv

)
ejV
+

(
uejGu + jvejGv

)
e−jV

]
(10.13)
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and expansion of equation (10.14) gives:

⇒ G =
ejw

2

{
a
[

ej(V−G)
+ e−j(V−G)

]
+ b

[
ej(V−G)

− e−j(V−G)
]}

=
1

2

[(
a+ b

)
ej(w−G)ejV

+
(
a− b

)
ej(w+G)e−jV

]
(10.14)

This expression is interesting because it shows that C can be interpreted
as the superposition of two circular hodographs at the same angular velocity,
with one turning counterclockwise and the other clockwise.

The identification of factors of ejV and e−jV gives:(
a+ b

)
ej(w−G)

= ue−jGu + jve−jGv(
a− b

)
ej(w+G)

= uejGu + jvejGv

or by identifying complex and imaginary parts:(
a+ b

)
cos (w− G) = u cos Gu + v sin Gv(

a+ b
)

sin (w− G) = −u sin Gu + v cos Gv(
a− b

)
cos (w+ G) = u cos Gu − v sin Gv(

a− b
)

sin (w+ G) = u sin Gu + v cos Gv

such that:

a+ b = ±
√

u2 + v2 + 2uv sin (Gu − Gv)

a− b = ±
√

u2 + v2 − 2uv sin (Gu − Gv)

The signs are clarified by the following conditions:{
a > 0

a >
∣∣b∣∣

which require that+ signs be shown in front of radicals (square roots).
Recall that b can be negative:
• if b is positive, the ellipse turns counterclockwise
• if b is negative, the ellipse turns clockwise.

a =
1

2

[√
u2 + v2 + 2 u v sin (Gu − Gv)+

√
u2 + v2 − 2 u v sin (Gu − Gv)

]
b =

1

2

[√
u2 + v2 + 2 u v sin (Gu − Gv)−

√
u2 + v2 − 2uv sin (Gu − Gv)

]
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The major axis orientation and phase lag are deduced from the following
equations:

tan (w− G) =
v cos Gv − u sin Gu

u cos Gu + v sin Gv
= tan (t1)

tan (w+ G) =
v cos Gv + u sin Gu

u cos Gu − v sin Gv
= tan (t1)

Note that t1 and t2 are defined to within 2p since the sine and cosine values
are known.{

w− G = t1 + 2k1p

w+ G = t2 + 2k2p

⇒

 w =
t1 + t2

2
+
(
k1 + k2

)
p

G =
t2 − t1

2
+
(
k2 − k1

)
p

The w and G values can be clarified by applying the following condition:

−
p

2
< w <

p

2
which imposes the even or odd values of k1+k2 and thus of k2−k1 (if k1+k2
is even then k2 − k1 is too, and vice-versa).

Note that what we call the ‘major axis direction’ is

bc =
p

2
− w.

The condition applied to the w value imposes an east-west orientation of the
major axis.

The significance of phase lag G resembles that concerning tidal heights
(maximum wave lag at the maximum action of the harmonic constituent),
i.e. the maximum stream lag in the east-west direction relative to the maxi-
mum action of the constituent.

Hence, all of the tidal stream ellipse elements are defined.
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Astronomical factors

considered in tidal

studies

Studies of ocean tides on Earth involve the positioning of tide-generating
celestial bodies and all liquid elements affected by their gravitational forces.
In order to understand the basis of such studies, it would be useful to review
a few elements of astronomy, especially spherical coordinate systems, celes-
tial body motions and their frequencies. This will help to more accurately
determine the relationships between the characteristics of motions and tidal
harmonic constituents.

Concerning the positioning (celestial body or place on Earth), only the
usual spherical coordinate systems and the conventional method for switch-
ing from one coordinate system to another are described. When a celestial
body is mentioned this usually refers to its centre. Theoretically, the gravita-
tional effect of the entire solar system has an influence on the tides, however
those planets outside of the Sun-Earth-Moon system have little effect and
can be ignored. While describing their relative motions, we will see how the
different time bases are determined on the basis of orbital periods, associ-
ated with the Earth’s rotation, thus allowing us to define various time bases.

1 • Spherical coordinate systems

Coordinate systems are selected according to the type of phenomenon or
motion to be studied. Note however that a reference is said to be Galilean
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when a point mass unaffected by any forces maintains its velocity. In such
a reference frame, this point is either immobile or in uniform translational
motion. The Copernician reference frame, which is based on the centroid
of the solar system, with axes oriented towards fixed stars, is a Galilean
reference frame (even though this is likely not perfectly exact if galactic
rotation is taken into account), as well as all other reference frames in
uniform translational motion relative to the Copernician reference frame.

For tidal studies, the primary references used are derived from geometric
characteristics associated with the shape and movements of our planet:
• Ellipsoidal rotation around a so-called polar axis or Earth axis (north-

ern and southern), with the Equator being the great circle.
• Two separate movements, including the rotation around the polar axis

and the orbital movement around the Sun, according to Kepler’s laws, which
have an ecliptic trajectory.

To determine astronomical directions, we use a sphere whose centre is
defined as required, with an infinite radius: a celestial sphere.

Two types of reference frame are used:
• Coordinate systems of the first type have the centre of the Earth as origin

and they rotate with it; these are used to determine the position of a place on
Earth and the direction of a celestial body relative to this place. The celestial
sphere used in such cases, which is fixed with respect to the observer, is called
a local celestial sphere.
• Coordinate systems of the second type also have the centre of the Earth

as origin, but their axes are oriented towards points that are quite fixed with
respect to the stars. They are used to determine the position of a celestial
sphere that is not fixed with respect to the observer. The celestial body
used here is called a fixed sphere which, relative to the local celestial sphere,
has a rotational movement around the polar axis, i.e. a so-called diurnal
movement.

Note that a reference frame associated with the Earth and having rota-
tional movements around the polar axis and following an orbit that is gov-
erned by laws of gravitation, is not Galilean. This gives rise to the Coriolis
force and the tide-generating force.

1.1 • Spherical coordinates on a local celestial sphere

In a precise geodetic system, the ellipsoidal shape of the Earth must be
taken into account. However, for tidal studies, the hypothesis of a spherical
Earth with a centre T and a mean radius aT is sufficient for first-order
approximations.
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1. Spherical coordinate systems

Under this hypothesis, the vertical at a place M is determined by a plumb-
line whose direction follows that of the Earth’s radius of the place. The
direction of the upward vertical indicates the zenith, as symbolised by the
letter M (like the place) on the local celestial sphere, with nadir being in the
opposite direction. The polar axis and vertical also determine the meridian
of the place. More generally, the meridian is a plane that contains the
polar axis. The great circle of a celestial sphere, which passes through the
zenith and the celestial poles, is called the celestial meridian of the place.
Note however that several different meanings of the word ‘meridian’ are
accepted. We adopt the most common meaning: the meridian of a point
(place, celestial body or star) is a semicircle (terrestrial or celestial) delimited
by the polar axis and the point. In this case, the term ‘upper meridian’ of the
point (terrestrial or celestial) is sometimes used, while the ‘lower meridian’
is the antipodal meridian.

The equatorial plane and polar axis provide a practical basis for determin-
ing the references, which are centred on T and linked with the globe (rotating
with it). Two systems correspond to this first type of reference, with the first
providing the geographical coordinates of a place on Earth, and the second
giving the equatorial coordinates of a celestial body for a given place. These
two orthonormal reference frames have a common polar axis

−→
TP. However,

the meridian used as origin (its intersection with the equatorial plane is the
zero axis of the latter) will differ depending on whether it is used to deter-
mine the position of a place or the direction of a celestial body.

1.1.1 • Geographical coordinates of a place

It is assumed that the zero axis is arbitrarily determined on the equatorial
plane. The Greenwich meridian (UK) was established as the zero meridian
at an international conference held in Washington in 1884, and it defines the
equatorial zero axis.

In these conditions, the geographical coordinates of place M are (fig-
ure A.1):
• longitude G, angle of the hemisphere of place M relative to the Green-

wich meridian, measured anticlockwise (in an orthonomal reference frame,
while adopting the axis of positive z northward), positive eastward and neg-
ative westward, from 0° to±180°;
• latitude L, angle of the zenith direction in M relative to the equatorial

plane, measured as positive in the northern hemisphere and negative in the
southern hemisphere, from 0° to±90°.

Note that for the complete determination of a place on the real Earth,
the altitude z must be known with respect to the reference ellipsoid, which
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Gree
nwich

 meridian
       

meridian of the place P

East
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P′

G

T

L

Equator

M

Figure A.1: Geographical coordinates of point M on the surface of the globe: longitude
G and latitude L.

here is considered as the spherical surface of radius aT, while the altitude is
measured positively according to the upward vertical.

1.1.2 • Equatorial coordinates of celestial bodies

As previously, the bases are the polar axis
−→
TP and the equatorial plane, but

here the meridian of point M is selected as origin.
In this reference frame, the two spherical coordinates of a celestial body A

are (figure A.2):
• the hour angle �, the angle of the hemisphere of celestial body A

relative to that of point M, calculated positively in a westerly direction. This
convention may be explained by the fact that the Earth rotates eastward
(anticlockwise with respect to the axis

−→
TP), while the apparent motion of

celestial bodies is westward. The hour angle is always positive and usually
expressed in hours (360°⇒ 24 h, or 15°⇒ 1 h).
• the declination d, i.e. the angle of the direction of celestial body A

(axis
−→
TA) relative to the equatorial plane, calculated (like the latitude of a

place) positively northward and negatively southward. The complement of
the declination is the polar distance which is given by p/2 − d with respect
to the north celestial pole and d+ p/2 from the south celestial pole.

Figure A.2 shows the geocentric zenithal distance u, i.e. the angle of
−→
TM
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Figure A.2: Equatorial coordinates of a celestial body: hour angle � and declination
d. Angle u is the geocentric zenithal distance of celestial body A with respect to the
zenith M of the place.

relative to
−→
TA and ranging from 0° to 180°, involved in the tide-generating

potential equation. The half-plane delimited by the direction of zenith
−→
TM

and passing through the centre of the celestial body defines the vertical of
the celestial body.

1.2 • Spherical coordinates on fixed spheres

These coordinates are independent of the place. The ecliptic is the plane
containing the Earth’s orbit. The trigonometric convention adopted for the
ecliptic is determined by a person who is standing on the side of the ecliptic
that encompasses the Earth’s North Pole. This person can thus see the Earth’s
orbit as it moves in an anticlockwise direction.

The ecliptic and the equatorial planes form an angle « of 23°26′21′′, called
the obliquity of the ecliptic, and their intersection defines the line passing
through the spring and autumn equinoctial points. The spring equinoctial
point, which is also called vernal equinox g, is determined by the position
of the Sun during its apparent motion as it passes northward through the
celestial equator. The thus defined direction of point g is a reference axis
common to the ecliptic and the equator for a fixed sphere. The position
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of a celestial body, irrespective of the observation site, can thus be readily
obtained in reference frames based on the equatorial or ecliptic plane, with
−→
Tg as common axis, thus giving the two following coordinate systems:
• celestial equatorial coordinates,
• ecliptic coordinates.

1.2.1 • Celestial equatorial coordinates

The polar axis
−→
TP and equatorial plane are the reference frame bases, but

here the meridian of point g serves as the origin (figure A.3). The two
celestial equatorial coordinates of a celestial body are thus defined by:
• the right ascension a, the angle of the half plane TPA with respect to that

of point g, calculated in an easterly direction from 0° to 360°;
• the declination d, the angle already determined in the equatorial coordi-

nate system from the Equator, thus positive northwards and negative south-
wards, from 0° to±90°.



P

H

T

I

L
Equator

Y

Ψ

M

A

J

β

λ

α

θ

δ

ε

ε

AH

ecliptic

Figure A.3: Celestial body coordinates on a fixed sphere: a) celestial equatorial: right
ascension a and declination d; ecliptics: longitude l and latitude b.

1.2.2 • Ecliptic coordinates

The reference of this coordinate system (figure A.3) has the ecliptic and its
orthogonal

−→
TP as base, with axis

−→
Tg being the origin axis in the ecliptic. The
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orientation of point P, i.e. the ecliptic north pole, is determined by the angle
between the two polar axes

−→
TP and

−→
TP, which is equal to «, the obliquity

of the ecliptic. This reference can be represented by the orthonormal axis
system TgCP.

The ecliptic coordinates of celestial body A are thus:
• the ecliptic longitude l: angle of the half-plane TPA (delimited by

axis
−→
TP and containing celestial body A) relative to that of the origin TPg,

calculated in a westerly direction from 0° to 360°;
• the ecliptic latitude b: the angle of the direction of celestial body A (axis
−→
TA) relative to the ecliptic, which is positive northward of the ecliptic P and
negative southward, ranging from 0° to±90°.

As no confusion is possible with longitudes and latitudes on Earth, these
coordinates are usually simply called longitude and latitude of a celestial
body.

As, by definition, the apparent motion of the Sun occurs in the ecliptic, its
latitude is zero. Its longitude is given by Newcomb’s model (1895), which
also gives the variations in the Earth-Sun distance relative to the mean
(149.6 million km).

Later (in § 3.3) the mean celestial body notion will be introduced in
the mean time definition. The ‘mean Sun’ is a fictional celestial body with
a constant angular velocity in the ecliptic, with the same apparent period
(vernal equinox to vernal equinox) as the true Sun. It should be pointed
out that the longitude of this fictional celestial body, whose value varies
uniformly over time, is incorrectly called the ‘mean longitude’ of the celestial
body rather than the ‘longitude of the mean celestial body’.

Similarly, in his lunar orbit model, Brown (1896) also used ecliptic coor-
dinates, which gave the variations in the Earth-Moon distance relative to
the mean (384 400 km). In his last model tailored for digital computation,
Brown provided astronomic precision for this orbit, thus enabling a very
good tidal prediction over several centuries.

1.3 • The geocentric zenithal distance of a celestial body

For a given place, the tide-generating force and potential are calculated
in the the vertical plane of the celestial body, and the geocentric zenithal
distance u

1 of the celestial body is the key parameter in determining these
two quantities. The tide-generating potential, which is the result of a so-
called meridian field revolving around the axis

−→
TA, see Appendix B), is

1. In astronomy, the term ‘distance’ may be applied to an angle.
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expressed especially by a series of Legendre polynomials as a function of
cos u. It is also useful to know the expressions of cosine cos u as a function of
the hour angle � of the celestial body in the different coordinate systems.

1.3.1 • Formulation of u in equatorial systems

By assigning a celestial sphere a radius of 1 (this assumption will be
adopted hereafter), we have: cos u =

−→
TM×

−→
TA.

In the two reference frames based on the equatorial plane (equatorial and
celestial coordinates), the geocentric zenithal distance of celestial body u is
more readily obtained by the cosine equation in the PAM spherical triangle:

cos u = sin L sin d+ cos L cos d cos � (A.1)

This angle depends only on the equatorial coordinates (�, d) of celestial
body A and latitude L of zenith M.

In an equatorial coordinate system (meridian of M as origin), the con-
stituents (here equal to direction cosines) of vectors

−→
TM and

−→
TA take the

form of two column matrices (subscript t for ‘time’):

Mt =


cos L

0

sin L

 At =


cos d cos �

cos d sin �

sin d


It is readily confirmed that their scalar product gives equation A.1.
Where �g denotes the hour angle of point g, which is often called

‘sidereal time’2 ż :

�g =�+ a.

In a celestial equatorial coordinate system:

Mq =


cos L cos �g

cos L sin �g

sin L


1.3.2 • Formulation of u in an ecliptic system

The cosine of the u angle in the ecliptic reference frame TgCP can also
be expressed using several spherical trigonometry equations, but the choice
of different spherical triangles to obtain the sought-after result is somewhat
arbitrary. It would make more sense to calculate it directly from the scalar

2. Note that this name is incorrect, i.e. depending on the usage adopted for names such as
‘tropical year’ and ‘tropical revolution’, the name ‘tropical time’ would be prefereable, but it is
still an ambiguous time base.
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product
−→
TM ×

−→
TA, as the constituents of these vectors are expressed in this

reference system.
If subscript e is added to the ecliptic reference frame, the constituents of

vector
−→
TA take the following column matrix form:

Ae =


cos b cos l

cos b sin l

sin b

 (A.2)

In the same reference frame, the direction cosines of
−→
TM have slightly

more complex expressions, but can be readily obtained by using the coor-
dinate transformation matrix Ceq, so as to be able to derive the ecliptic con-
stituents from the equatorial constituents:

Ceq =


1 0 0

0 cos « sin «

0 − sin « cos «


Matrix Me, corresponding to the constituents of vector

−→
TM in an ecliptic

system, can be obtained via the matrix product: Me = Ceq ×Mq
Considering the previous equation for the Mq matrix, then:

Me =


cos L cos(a+�)

cos L sin(a+�) cos «+ sin L sin «

− cos L sin(a+�) sin «+ sin L cos «


With Ae obtained by equation (A.2), cos u can be expressed as a function

of the hour angle and ecliptic coordinates of the celestial body as follows:

−→
TM×

−→
TA = cos u = sin L× f (b, l)+ cos L× g(b, l, �) (A.3)

where:

f (b, l) = cos « sin b+ sin « cos b sin l

g(b, l, �) = cos b cos l cos(a+�)

+ (cos « cos b sin l− sin « sin b) sin(a+�)

As equations (A.1) and (A.3) are equivalent, then:

sin d = cos « sin b+ sin « cos b sin
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an equality which can be deduced from the equation of cosines in the spher-
ical triangle APP, and also:

cos d cos � = cos b cos l cos(a+�)

+ (cos « cos b sin l− sin « sin b) sin(a+�)

This much more complex latter equation can also be obtained through
spherical trigonometry equations. As pointed out above, and since we have
several possibilities when selecting spherical triangles to achieve this result,
direct determination of the scalar product

−→
TM ×

−→
TA by the coordinate

transformation matrix would seem to be the most sensible option in this
case.

2 • Celestial bodies, typical motions and times

We described the ecliptic as the Earth’s orbit around the Sun when defin-
ing the different spherical coordinate systems. Actually, it is the Earth-Moon
centroid that, according to Kepler’s laws, describes the ecliptic, with one of
the focal points being the barycentre of the solar system.

lunar orbit

polar axis Equator

North

Earth
Moon

Soleil
ecliptic

 

Figure A.4: Movements of celestial bodies.

The Sun, Earth and Moon are the only celestial bodies taken into account
in tidal predictions (figure A.4 and table 1.1). The Earth-Sun distance
and the respective masses of these two celestial bodies indicates that their
centroid is very close to the centre of the sun (450 km), a distance that is
less than 0.1% of the Sun’s equatorial radius. However, the centroid of the
Earth-Moon is 4 700 km from the Earth’s centre, or 75 % of the Earth’s radius,
1.2 % of the distance between these two celestial bodies, but only 0.003 % of
the Earth-Sun distance. This very low percentage explains why the ecliptic is
usually defined as the Earth’s orbit around the Sun, whereas it is actually the
orbit of the centroid of the Earth-Moon system.
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Table 1.1: Features of celestial bodies relative to the Earth’s features
(mass: 5.98 · 1024 kg; equatorial radius: 6 378 km).

Mass Mean distance (km) Equatorial radius

Sun 333 946 1.496 · 108 109.125

Earth 1 0 1

Moon 0.0123 384 400 0.272 5

Note that the lunar orbit is not completely elliptic around the Earth-Moon
centroid as it is very markedly disturbed by solar attraction.

2.1 • Earth: typical motions and times

We have seen that the different spherical coordinate systems used to locate
a place or a celestial body are selected on the basis of the Earth’s specific
characteristics (ellipsoidal rotation, gravity, orbital plane). However, the
time bases are determined from the periods of the Earth’s motions: orbital
rotation around the Sun and its rotation around its own axis.

Its ellipsoidal rotation pattern has an excentricity of 0.082 and the two
poles are 12 714 km apart; the circumference of the Equator, i.e. the great
circle of this ellipsoid, is 40 075 km (equatorial diameter 12 756 km).

As mentioned above, the angle between the ecliptic and equatorial planes
is « = 23°26′21′′, and their intersection defines the line of the spring and
autumn equinoctial points. These points, which are reached around 21
March (ascending solar node or vernal equinox) and 23 September (descend-
ing node), respectively, move westward at an extremely slow angular velocity
relative to stars – this is the precession of the equinoxes.

Precession consists of a motion of the equatorial pole around the ecliptic
pole, with a period of around 26 000 years, associated with a slight variation
in obliquity «. Vernal equinox moves around the Equator in a westward
direction at a rate of about 50′′ a year.

With the chosen orientation conventions, the Earth’s orbital rotation is in
an anticlockwise direction (this also applies for the apparent motion of the
Sun in the ecliptic). The duration of this rotation, i.e. the time interval
between two transits of the Sun at vernal equinox, defines the tropical or
equinoctial year, as usually symbolized by TA, during which the Earth’s
meridian undergoes 365.242 2 rotations relative to the Sun. During this
orbital rotation, the time interval between two transits of the Sun over the
Earth’s meridian varies around a mean value, i.e. the mean solar day which,
when divided into 24 h, served as the fundamental time base prior to the
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advent of the atomic clock. The duration of a tropical year is thus 365.242 2
days (in mean solar time) or 365 d 5 h 48 min 45 s. This time base was
adopted because it is in line with the continuous cycle of seasons, and it is
used for tidal computations.

A sidereal year, or the time between two transits of the Sun at a specific
point in the sky (fixed sphere), is 365.256 4 days – this value is 20 min 25 s
greater than the tropical year TA following the precession of the equinoxes.

Moreover, in astronomy, apsides are the extremities of the great axis of
the elliptic orbit of a cellestial body. For the ecliptic (celestial eccentricity
0.016 7), the closest apsis to the Sun, i.e. periapsis or perihelion, is at
147.1 · 106 km and the furthest, i.e. apoapsis or aphelion, is at 152.1 · 106 km.
From the point of view of tidal studies (as observed on land), the apparent
motion of the Sun is considered to be that of a satellite of Earth. Relative
to the vernal equinox, it takes 209.4 centuries for a complete rotation of
solar perigee in anticlockwise direction. Because of this slow movement, the
Earth’s path passes perihelion every 365.2594 days – this is an anomalistic
year which is 24 min 46 s longer than a tropical year. Note also that the
Sun achieves maximum declination max |dS| = « at solstice (from the
Latin sol, Sun, and stare, stop). The positive declination corresponds to
summer solstice in the Northern Hemisphere and winter in the Southern
Hemisphere (around 21 June), while the negative declination corresponds
to the opposite situation (around 22 December). It should be noted that the
respective directions of these extremes do not correspond to those of apsides.
The Earth reaches perihelion around 3 January and aphelion around 5 July.
During past centuries, these transit points were earlier, with a drift of around
1.74 days per century.

We have already seen that the Earth rotates anticlockwise (eastward) on its
axis. A complete revolution of an Earth meridian relative to vernal equinox
is 23 h 56 min 4 s (23.934 470 h), which is the length of a sidereal day
(the term commonly used, but it is actually a tropical or equinoctial day)
of close to 24 h. This difference could be explained by the fact that, when
orbiting, the Earth completes an extra rotation relative to the vernal equinox
as compared to that relative to the Sun, i.e. 366.242 2 sidereal rotations in
365.242 2 days. Actually, the rotational velocity varies very slowly, like the
polar axis, which behaves like the axis of a spinning top, but it does not
maintain a constant spatial orientation. Nevertheless, as pointed out above,
the precession of equinoxes, i.e. a high amplitude but very slow motion, is
not taken into consideration in tidal computations, nor is the very minor
decrease in rotation velocity, i.e. around 2 ms/day over a century.

However, there are also fluctuations of minor amplitude in these two
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elements (polar rotation and direction), but with shorter periods (nuta-
tion). These fluctuations have several causes, with the most important
being impulse exchanges between the different Earth envelopes made up of
geophysical fluids: atmosphere, hydrosphere, cryosphere, lithosphere and
magmatic mantle. Earth rotation velocity measurements thus indicate, for
instance, variations due to atmospheric motions of around a millisecond per
day. Ocean tides induce only slight day length variations, i.e. a maximum of
0.1 ms (figure A.5).

Similarly, the poles have more or less periodic gyratory motions, with one
of the most important being Chandler wobble. It has a period of 434.3 days
(±2 days) with an amplitude of around 0.2 to 0.3 arc seconds. This period,
which has been identified by a few authors in sea level measurements in the
North Sea, has never been detected in the series of over 150 years of tidal
records available for Brest (France).

Due to the very low variation in these parameters, studies of tides could
be conducted with the factors indicated above with records spanning sev-
eral centuries: a fixed polar axis direction with a uniform Earth rotation,
thus with a constant angular velocity, symbolized by vT and equal to
15.041 068°/h.

2.2 • The Moon and its motions

The Moon, which is subjected to the attraction of the Earth and Sun,
follows an almost elliptical orbit anticlockwise with a mean excentricity of
0.054 9, with the Earth-Moon centroid (4 700 km from the Earth’s centre)
being one of the foci. Under the gravitational force of the Sun, the eccentric-
ity ranges from 0.044 to 0.067 (2.5-4-fold that of the ecliptic). The Moon’s
mass is thus 81.3-fold less than that of Earth and it orbits at a mean distance
of 384 400 km from Earth (around 60.3 Earth radii), with the range being
roughly 356 000 to 410 000 km.

Relative to the vernal equinox meridian, the Moon completes its orbit in
a mean time of 27.321 581 6 days (27 d 7 h 43 min 4.7 s), i.e. its tropical
revolution time. This revolution corresponds to a mean angular velocity
(derived relative to its right ascension time) of 0.549 016 521 °/h, with the
same sign as the Earth’s rotation. An Earth meridian, in phase with the
Moon at a given time, should thus complete more than one rotation (relative
to the vernal equinox meridian) for this celestial body to pass over again.
The time interval between these two transits of the Moon over the meridian
of the place is a lunar day. The mean angular velocity of an Earth meridian
relative to the Moon’s meridian corresponds to the deviation between the
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two above mentioned angular velocities, so the mean duration of a lunar day
is 24 h 50 min 28.3 s.

The mean time interval between two successive conjunctions of the Moon
and Sun (new moons) is called a synodical month, which has a duration of
29.530 588 1 days (29 d 12 h 44 min), i.e. lunation, which represents a month
on ancient lunar calendars.

Moreover, the position of perigee varies over time and completes a rev-
olution in an eastward direction (from vernal equinox to vernal equinox)
in 8.8475 years. An anomalistic month (27.554 550 2 days, or 27 d 13
h 18.5 min) corresponds to two successive transits of the Moon at perigee.
The direction of this rotation, which is the same as that of the Moon on its
orbit, explains why its duration is longer than a tropical period.

The ascending node N is the point at which the Moon’s orbit crosses the
ecliptic in northward direction. This point gradually shifts westward along
the ecliptic, i.e. so-called regression motion, with a complete revolution
taking 18.613 3 years relative to the vernal equinox. Two successive transits
of the Moon at its ascending node represents a draconic month, with a
period of 27.212 217 8 days (27 d 05 h 05.6 min), which is shorter than a
tropical month because of the regression. It should be mentioned here that
the Sun crosses the Moon’s ascending node every 346.6 days, and this period
represents a draconic year.

Note also that solar attraction induces periodic oscillations in the Moon’s
motion relative to its mean orbit around Earth. The two major perturbations
in its orbital velocity are evection (period 31.8 days) and variation (period
14.8 days). The inclination of the Moon’s orbit ranges from 05°00′ to 05°17′

on the ecliptic (mean 05°07′47′′), and from 18°30′ (ascending node N at
vernal equinox) to 28°30′ (N at the autumnal equinoctial point) on the
Equator.

The description of celestial body motions thus reveals many different
periodicities, but these motions occur independently. However, at around 10
centuries BC, Chaldeans already knew about the eclipse recurrence interval
(around 18 years and 11 days), or the so-called saros cycle.

The following correspondences may be noted:
• for the Moon:

— 223 lunations representing 6 585.321 1 days,
— 239 anomalistic months (perigee): 6 585.537 5 days,
— 242 draconic months (ascending node): 6 585.356 7 days,
— 241 sidereal months (fixed stars): 6 584.520 3 days,
— 241 tropical years (vernal equinox): 6 584.501 1 days.
• for the Sun:

291



A. Astronomical factors

— 18 tropical years: 6 574.359 6 days,
— 18 sidereal years: 6 574.614 6 days,
— 18 anomalistic years: 6 574.669 2 days,
— 19 draconic years: 6 585.400 0 days.

After one saros, the Earth, Moon and Sun are thus in around the same
relative configuration, but deviations relative to the initial configuration
increase during successive saros cycles. It would thus be incorrect to state
that saros represents an absolute period of the system. The fact that the
durations of the different months of the system are not the same is sufficient
to conclude that the relative motions of the three celestial bodies (Earth,
Moon and Sun) are not periodic.

3 • Time considerations for tidal studies

Since the beginning of life on Earth, the diurnal cycle has been considered
as the most natural time base due to its impact on biorhythms. However,
for the purposes of organizing their activities, human civilizations have for
thousands of years been focusing on defining more precise time units, as well
as conventions so as to be able to apply a common time system to larger and
larger geographical sectors.

The primary time bases for tidal studies are defined chiefly on the basis
of the rotation period of each celestial body. Items described earlier are
necessary to examine these different times and relationships between them,
so some repetition is inevitable.

For tidal studies, minute accuracy is generally considered sufficient in
dating specific events, thus warranting the approximations made in the
following sections.

3.1 • Sidereal time

Sidereal time is directly associated with the Earth’s rotation around its
polar axis

−→
TP, whose anticlockwise (eastward) angular velocity vT is con-

sidered constant (see 2.1) for the purposes of tidal studies. For a given place,
we have seen that the hour angle �g of point g defines the local sidereal
time.

A sidereal day Tg (n.b. the term commonly used in reference to a tropical
or equinoctial day) is the time required for �g to increase by 2p, i.e. 360°
or 24 sidereal hours (hs), which corresponds to vT = 2p/Tg, i.e. 360°/24
hs or 15°/hs. Variations in DTg relative to the mean Tg are very slight, with
max |DTg/Tg| ≈ 10−7. For tidal studies, this time is therefore considered
as being mechanically constant. The mean angular velocity vT is 15.041 068
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degrees per hour (from the mean solar time; see 3.2), thus giving a mean
sidereal day time of 23 h 56 min 04.09 s, with variations of less than 0.01 s in
absolute value, which is very negligible for tidal studies.

3.2 • True and mean lunar times

The lunar time concept is applied only for tidal studies since the Moon is
the main driving force of tides. It is actually a uniform time, derived from
the mean time, and defined by the motion of the mean Moon (n.b. fictional
celestial body), whose orthogonal projection on the ecliptic involves uni-
form motion with the same apparent orbital period (from vernal equinox to
vernal equinox) as the true Moon. Recall that the longitude of this projection,
which varies uniformly over time, is incorrectly called the ‘mean longitude’
of the celestial body, rather than the ‘mean Moon’.

The time interval between two consecutive transits of the Moon over the
meridian of the place is called the true lunar day, with the mean lunar day
denoted TL. In mean time, we have TL = 24h 50 min 28.3 s. This is a first-
order approximation of the fundamental period of the so-called ‘diurnal’
lunar tide. The term lunar hour is sometimes used (TL/24), where 1 lunar
hour = 1.035 050 101 h of mean time.

3.3 • True and mean solar times; equation of time

The tropical year TA, which governs the seasonal cycle and the rhythm
of human activities, was selected as the principal time base. Although the
Earth’s motion may at first seem to be circular and heliocentric, its orbit is
actually elliptical, whereby the Earth transits along this orbit sweeping out
equal areas in equal intervals of time, in compliance with Kepler’s laws. This
gives an orbital angular velocity of the Earth relative to the Sun (located
in one of the foci) that varies around a mean value, with a maximum at
perihelion and a minimum at aphelion. In other words, the hour angle
of the Sun �Sv, which defines the true solar time (where subscript Sv
denotes the true Sun), has the drawback of varying irregularly. The true
solar day, symbolized here by TSv, is thus determined by the time between
two successive transits of the Sun over the meridian of a given place. It begins
at true midday, at the time of the upper meridian transit. This time, which
in ancient times was measured with a gnomon, was subsequently more
accurately determined using sundials fitted with a style oriented parallel
to the Earth’s axis. These instruments were used for a very long time to
determine the local time in use. This time base was used especially for the
first tidal measurements recorded at Brest from 1806 to 1897.
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During the year, the true solar day undergoes fluctuations DTSv with
respect to its mean TSv, with max |DTSv/TSv| ≈ 0.5 · 10−3, which are much
greater than those of the sidereal day Tg (n.b. max |DTg/Tg| ≈ 10−7). The
range is from 23 h 59 min 39 s to 24 h 00 min 30 s.

If we overlook these variations (derived from the laws of mechanics) in
the true solar time obtained via observations, we get the the mean local time
(denoted t) whose corresponding unity is the mean day, a mean value TSv
established on the basis of the duration of a tropical year TA. The mean local
time runs from 0 to 24 h, beginning at midday. The deviation between the
two solar times (i.e. ‘mean’ minus ‘true’) is called the equation of time.

Below we formulate an equation where TSv is considered as a function
of the mean longitude of the Sun, a parameter that is defined has having a
uniform variation pattern. For a given place, we obtain the following hour
angle equation:

�g = aSv +�Sv

where

�g is the hour angle at vernal equinox (local sidereal time),

aSv is the right ascension,

�Sv is the hour angle of the Sun.
When this equation is derived as a function of time, we obtain:

∂�g

∂t
=

∂aSv

∂t
+

∂�Sv

∂t

The derivative of the local sidereal time ∂�g/∂t is simply the angular
velocity of the Earth’s rotation vT = 2p/Tg, which is considered constant.
However, this does not apply for the derivative of ∂�Sv/∂t, which varies
continuously but slowly around the mean. With a very accurate approxi-
mation, we have, by assimilating the derivative ∂�Sv/∂t to the increment
d�Sv/dt, with d�Sv = 2p and the corresponding time dt, which is simply
TSv, we obtain:

2p

Tg

≈
∂aSv

∂t
+

2p

TSv

and also:

TSv ≈
2p

2p

Tg

−
∂aSv
∂t

To simplify the formulation, the subscript Sv will be omitted for the
celestial equatorial coordinates (a, b) and ecliptic coordinates (l, 0) of the
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true Sun. As the value of ∂a/∂t is small with respect to vT = 2p/Tg (around
1/366), we can also write, with a good degree of approximation:

TSv ≈ Tg

[
1+

∂a

∂t

vT

]
Moreover, the relationships between ecliptic and celestial equatorial coor-

dinates give:

tan a = cos « tan l⇒
∂a

∂t
=

cos «

cos2
l+ sin2

l cos2
«

×
∂l

∂t

Hence, when taking Kepler’s area law into account, we have:

r2
Sv∂l

∂t
= ab

( 2p

TAn

)
where:

rSv is the Earth-true Sun distance at time t,

a and b are the semi-major axis and semi-minor axis of the ecliptic,

TAn is the duration of an anomalistic year (time between two successive
passages at solar perigee, i.e. 365.259 4 days).

The true solar day TSv, can be expressed with a very good degree of
approximation as a function of polar coordinates of the apparent Sun rSv by:

TSv ≈ Tg

(
1+

cos «

cos2
l+ sin2

l cos2
«

×
ab

r2
Sv
×

Tg

TAn

)
To obtain the equation of time, we have to formulate equations for rSv and l

as a function of the mean time t (expressed in mean days).
When taking the direction of perihelion of longitude lps as reference axis

in the ecliptic, the position of the apparent Sun with respect to the centre of
the Earth is given by the equation in polar coordinates [rSv, (l− lps)] of the
ellipse:

rSv = a
1− e2

1+ e cos(l− lps)
(A.4)

where e is the eccentricity of the orbit (recalling that perihelion moves slowly
in anticlockwise direction and completes a revolution in 209.4 centuries).
The angle (l − lps) of the Sun’s direction relative to that of its perihelion is
called the true anomaly. As it varies irregularly over time, the mean anomaly
(as symbolized by the letter M, which always represents the value of this
angle if the variation in the Sun’s longitude were uniform) is defined, while
the perhelion transit times remain constant. It can be expressed as a function
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of time as: M = h− p1, where h is the mean longitude of the Sun (symbol h
for helios), and p1 is the mean longitude of perihelion.

Let t0 denote the time of the Earth’s transit at perihelion and t denote the
number of days since 1st January 2000 at 0 h. The value of the anomaly M in
arc degrees is determined by:

M° ≈
360(t − t0)

TAn
= 357.036 3+ 0.985 60t

Now the parameters (rSv, l) of the apparent Sun can be expressed as a
function of M. Because of the low value of excentricity e (0.016 73), equation
A.4 gives a first-order approximation of the value of rSv in metres:

rSv ≈ a(1− e cos M) = 149.6 · 109
× (1− 0.016 73 cos M).

Note that, with this approximation, the semi-major axis of the Earth’s orbit
defines the mean Earth-Sun distance. The longitude l can be obtained in
degrees by: l° ≈ 282.94+M+ 1.917 sin M.

In a first-order approximation, the duration of the true solar day TSv
thus has cyclical variations of period TA. The equation of time E(t) below,
provided by the Bureau des Longitudes (Paris, France), is valid for the 1900
to 2100 period. It can be used to compute the deviation E(t) in minutes
between the mean time and the mean solar time by expressing the values
of time t in this equation in mean days:

E(t) min = 7.362 sin M− 0.144 cos M+ 8.955 sin 2M

+ 4.302 cos 2M+ 0.288 sin 3M+ 0.133 cos 3M+ 0.131 sin 4M

+ 0.167 cos 4M+ 0.009 sin 5M+ 0.011 cos 5M+ 0.001 sin 6M

+ 0.006 cos 6M− 7.064 · 10−5t sin 2M+ 1.46 · 10−5t cos 2M

The extremes are reached in February (+14 min) and November
(−16 min). This difference is balanced out four times a year (around
mid-April, mid-June, early September and late December).

Note, finally, that the mean day is the result of a uniform variation (from
0 to 24 h) counted from midday. To avoid the drawback of a date change
occurring in the middle of the day (between sunrise and sunset), the civil
time is defined, which is equal to the mean time plus 12 h.

3.4 • Universal time in common use

The civil time of the place is no longer used because, by definition, it
changes from one place to another, which is inconvenient. The advent of
the railroad in the 19th century prompted the need for a common time to
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encompass large areas (e.g. in France, the Law of 14 March 1891 established
the mean civil time of Paris for all of metropolitan France and Algeria).
At even earlier times and in remote areas, prior to the advent of radio
transmission, the local civil time or, when there was no public clock available,
the sundial time was generally used. Hence, from the outset in 1806, tidal
measurements at Brest were read or recorded first in true time, then in local
civil time, in Paris civil time, and finally in universal time.

After the International Meridian Conference that was held in Washington
in 1884, the Greenwich civil time became the legal universal time, which is
generally just called universal time and symbolized by UT. Note that the
Greenwich mean time (GMT), which is often provided instead of UT, is
unsuitable because it refers to the mean time, not the civil time.

Times used throughout the world are directly derived from UT. The sur-
face of the globe is divided into 24 time zones having as median lines the
24 meridians whose longitudes occur every 15°. These time zones are num-
bered from 0 to 23 eastward, beginning at the Greenwich meridian. Based on
mariners’ usage, they have been assigned letters of the alphabet, beginning
with the letter A representing time zone 1 and, in alphabetical order, finish-
ing with letter Z for time zone 0. By convention, the time corresponding
to each one is the UT plus the number of the time zone. The lower Green-
wich meridian, which is in the 12th time zone, is the international date line.
When the time zone number is above 12, one day must be deleted from the
date. For the 12th time zone, this day is deleted only if the place is east of the
international date line.

Note however that the dispositions imposed by the Washington Confer-
ence in 1884 included several exceptions. Many countries have two legal
times, i.e. daylight savings time and standard time. In some regions, the
legal time differs by 30 min from that of the time zone, but sometimes there
is very little difference.

The universal time defines the time scale as published on calendars and as
expressed by a time unit, i.e. the mean second. However, this definition of a
fundamental unit turned out to be too inaccurate for certain modern physics
applications. This led to the development of ephemeris time (ET) and Inter-
national Atomic Time (IAT), which are only mentioned here for information
– such high accuracy would be unwarranted for tidal applications.

3.5 • Calendars

The time interval since an initial time is required when calculating astro-
nomic elements for a given date. This is a chronology issue. The dates are
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obtained from calendars with a clearly defined baseline day numbering sys-
tem. However, for tradition and convenience reasons, these calendars are
in the form of a complex partitioning in years and months. Each civiliza-
tion has created its own calendar, e.g. Julian, Gregorian, Coptic, Muslim,
Israelian, Republican, Hellenistic, Indian, Tamil, Cambodian, Chinese, etc.

The earliest calendars were lunar calendars or almanacs (from the Arabic
al and mene, i.e. lunation) that were based on lunations or time intervals
between consecutive new moons. This was the case with the Chaldean
calendar, and with the Muslim calendar (Hijri calendar), which is the official
calendar in some Persian Gulf countries. The first day of the first year on the
Hijri calendar is the day that Muhammad left Mecca for Medina, i.e. 17 July
622. Most Muslim countries have, however, now adopted the Gregorian
calendar and only use the Hijri calendar for religious purposes.

Lunation thus serves as a time unit on these calendars. This may seem
surprising, but at a time when the mechanical concept of ‘uniform time’
was meaningless, the lunar cycle seemed more regular than diurnal cycles
in which the lengths of days and nights vary between seasons. However, this
dating approach, which is not dependent on the rhythm of life (days, seasons,
years), clearly has major shortcomings. As there are also marked variations
in lunation (ranging from 29 days and 6 h to 29 days and 20 h), its use as a
time unit is incompatible with clockwork. It is thus necessary to introduce
the notion of mean lunation, which is equivalent to 29.530 588 1 days (29
d 12 h 44 min) of mean time.

The Gregorian calendar, which has now been universally adopted,
includes two types of year, i.e. ‘common years’ divided into 12 months
of 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30 and 31 days, respectively, and ‘leap
years’ in which the second month has 29 days. Leap years are those whose
year is a multiple of 4, except those whose year is a multiple of 100, but not of
400. Hence, 1900 was a common year whereas 2000 (divisible by 400) was a
leap year. The mean year length obtained in this way – called the Gregorian
year – is 365.242 5 days of mean time, which is close to the tropical year
length (365.242 2 days).

The Gregorian calendar was designed with respect to the Julian calendar,
which was created in 45 BC. In the Julian calendar, all years whose mille-
nium is a multiple of 4 (including multiples of 100), are leap years. The mean
length of a Julian year is thus 365.25 days, which differs markedly from the
length of a tropical year (a time unit that is often used in astronomy is the
Julian century of 36 525 days of mean time). Due to this difference, over the
centuries, there was a lag in the dates of solstices and equinoxes, which was
only partially corrected by the adoption of the Gregorian calendar through
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the elimination of 10 days in October 1582: the day after Thursday 4 Octo-
ber 1582 (Julian calendar) was thus Friday 15 October 1582 (Gregorian cal-
endar). The Gregorian calendar was immediately adopted in four Catholic
countries: Italy, Spain, Portugal and the Netherlands. In France, the reform
was only applied in December of the same year, when the day after Sunday
9 December 1582 became Monday 20 December 1582. In Great Britain, the
reform was not applied until 1752, when 2 September was followed immedi-
ately by 14 September. The Gregorian calendar was gradually adopted by dif-
ferent countries up until the early 20th century, and it is now used through-
out the world (except for the celebration of certain religious holidays).

These are important considerations for astronomic and tidal computa-
tions which are sometimes performed for the reenactment of historical
events. In such cases, it is necessary to be able to transcribe a date – after
checking the calendar from which it derives – into a chronologically consis-
tent system.

According to a convention that was adopted by astronomers to facilitate
chronological numbering, mean days, beginning at midday UT, are num-
bered as of a prehistoric period. The day number, beginning from the origi-
nal prehistorical date, is the Julian date, i.e. 1st January 4713 BC on the Julian
calendar. The Julian date thus represents the interval of time since midday
UT on that day. Note that historians use the Julian celendar for dates prior to
its creation (−45) and that the year preceding 1 AD on the Christian calen-
dar is denoted 1 BC, which is a leap year. Years 1, 5, 9, etc., BC are thus leap
years. Astronomers use the algebraic notation: year 1 BC corresponds to the
astronomical year number 0, with 2 BC being year−1, and so on.
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B

Force

and potential fields

In many problems involving vector fields (forces or currents), the con-
cept of potential can be introduced to enable substantial simplifications and
clarify the physical aspects of the phenomenon. Concerning tides (Chap-
ter III), we have analysed the spatial distribution of the tide-generating force
on Earth at a given time. This distribution is representative of a force field
with a meridional structure with the direction of the celestial body-Earth
centres as axis of revolution. It is essential to know whether this force distri-
bution derives from a potential in order to be able to assess the structure.

This appendix provides a brief review of vector and potential fields, whose
concepts are common to many physical phenomena: electricity, magnetism,
hydrodynamics, gravitation, etc. Hereafter, by preference, the term ‘force’ is
used instead of ‘vector’ or ‘velocity’. The main definitions required to under-
stand the concepts of force and potential fields are first outlined. Plane fields
are then examined to facilitate the understanding of so-called meridional
fields in 3D space.

1 • Force fields: terminology and definitions

Let us consider an orthonormal reference frame Oxyz. It is assumed that
there is a simply connected spatial region where a force field is defined by
regular functions (uniform, non-zero, continuous and accepting continuous
partial derivatives). These conditions give rise to lines and tubes of force.

One feature of lines of force is that they accept as tangent the force applied
at each of their M points of coordinates (x, y, z). While the force vector
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B. Force and potential fields

−→
F (M) characterizing the studied field accepts the regular functions of con-

stituents [F(x), F(y), F(z)], lines of force verify the two differential equations:

dx

F(x)

=
dy

F(y)

=
dz

F(z)
(B.1)

Hence, only one line runs through each point M in this space (application
of Cauchy’s theorem on solutions for differential equation systems).

A tube of force is a surface consisting of a set of lines of force that is
dependent on a closed curve and completely contained in the associated
space considered. This curve cannot have any crunodes or arcs in common
with a line of force.

A force field with the above described properties is said to be ‘solenoidal’
if the divergence of the force

−→
F (M) is zero at all M points, i.e. if:

−→
∇ ×
−→
F (M) =

∂F(x)

∂x
+

∂F(y)

∂y
+

∂F(z)

∂z
= 0 (B.2)

where
−→
∇ is the vectorial operator of constituents

(
∂/∂x, ∂/∂y, ∂/∂z

)
in

Cartesian coordinates, while× denotes the scalar product. This latter prop-
erty results in the conservation of flows through tubes of force. In hydrody-
namics, the equivalent is the conservation of incompressible fluid flow in a
stream tube.

Force
−→
F (M) derives from a scalar potential U(M) if its constituents satisfy

the following equation:

−→
F (M) =

−→
∇ U(M) (B.3a)

where
−→
∇ is the previously described vectorial operator. In a matrix repre-

sentation, this equality gives the Cartesian constituents of the force:

−→
F (M)⇒


F(x)

F(y)

F(z)

 =


∂U/∂x

∂U/∂y

∂U/∂z

 (B.3b)

A force will derive from a potential if and only if the rotational (or whirl)
is zero, or:

−→
∇ ∧
−→
F (M) = 0 (B.4)

Note that in some applications (especially in electricity and magnetism)
U(M) often denotes the force function, whereas the potential is defined as
the opposite, i.e. −U(M).
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2. Plane fields

For a solenoidal field deriving from a scalar potential, force
−→
F (M) satis-

fies the two conditions B.2 and B.3, thus giving the following equation:

−→
∇ ×
−→
∇ U(M) =

∂2U

∂2x
+

∂2U

∂2y
+

∂2U

∂2z
= DU = 0 (B.5)

where D is the Laplace operator. Function U(M), which is both regular (def-
inite, continuous, and derivable) and the solution of the Laplace equation
when the right-hand side happens to be zero, is said to be ‘harmonic’.

2 • Plane fields

Concerning certain physical phenomena, the force
−→
F (M) has the follow-

ing two properties: it remains parallel to a fixed plane, and also its intensity
and direction remain the same while its origin M moves perpendicular to
this plane. This results in a plane force field. With an orthonormal trihedral
Oxyz, where the force field is identical in all planes parallel to Oxy, it is possi-
ble to determine the entire field in the considered space by assessing what is
taking place on this latter plane. In this section, coordinate z is not involved
(z = 0).

2.1 • Lines of force on a plane solenoidal field

When using Oxy as Cartesian reference frame, the differential equation
for such a line of force is:

− F(y) · dx+ F(x) · dy = 0 (B.6)

In the case of a solenoidal field (zero divergence), the first side of equation
B.6 is a total differential dL. Then at all points M(x, y), there exists a flow or
discharge function that satisfies equation:

L(x, y) = l

where l is constant. The corresponding line of force is denoted by Ll. The
matrix representation of constituents of

−→
F (M) is as follows:

−→
F (M)⇒

[
F(x)

F(y)

]
=

[
+∂L/∂y

−∂L/∂x

]
(B.7)

Let us consider the variation in function L(x, y) along a pathway that links
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B. Force and potential fields

any point P on line Lp with any point Q on line Lq. Along the pathway PQ,
−→
ds is the elementary displacement defined by its constituents:

−→
ds ⇒

[
dx

dy

]
and −→n is the unit vector of the orthogonal at each of its points, which is
obtained by an anticlockwise rotation of p/2 from

−→
ds . At each point on the

curve PQ, we thus have the constituents of vector−→n ds:

−→n ds⇒

[
−dy

+dx

]

with ds = ‖
−→
ds‖.

We can thus write:

L(Q)− L(P) =

∫ Q

P

[
∂L

∂x
dx+

∂L

∂y
dy
]

=

∫ Q

P

(
−F(y) dx+ F(x) dy

)
or:

L(Q)− L(P) = −

∫ Q

P

−→
F (M)×

−→n ds.

This is, to the closest sign, the flow of force
−→
F (M) along pathway PQ. From

a hydrodynamic standpoint, this corresponds to the flow of a fluid between
the two corresponding stream lines Lp and Lq.

2.2 • Plane solenoidal fields: complex potential

A force
−→
F (M) can derive from a scalar potential U(M) if and only if the

rotational of this force is zero.
In the light of equation B.7, this rotational may be formulated as:

∂F(y)

∂x
−

∂F(x)

∂y
= −

(
∂2

L

∂2x
+

∂2
L

∂2y

)
= −DhL

where Dh is the Laplace operator in the plane Oxy, which is assumed to be
horizontal (subscript h), or:

Dh =
∂2

∂2x
+

∂2

∂2y
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2. Plane fields

Hence, for a plane solenoidal field, this necessary and sufficient condition
indicates that the function of flow L(M) confirms, as does the scalar poten-
tial U(M), the Laplace equation.

2.2.1 • Associative relations between the potential and lines of force

Based on the properties described above, we may formulate the following
association equations representing relations between functions representing
a solenoidal potential plane and those representing flow lines:

F(x) =
∂U

∂x
=

∂L

∂y
(B.8a)

F(y) =
∂U

∂y
= −

∂L

∂x
(B.8b)

As for L(x, y), consider the variation in function U(x, y) along a pathway
linking any point P on line Up with any point Q on line Uq. On the curve PQ,
−→
ds (dx, dy) denotes the elementary displacement along the pathway.

The potential difference is therefore as follows:

U(Q)− U(P) =

∫ Q

P

[
∂U

∂x
dx+

∂U

∂y
dy
]

=

∫ Q

P
(F(x) dx+ F(y) dy)

=

∫ Q

P

−→
F ×
−→
ds

It represents the work of force
−→
F (M) along curve PQ, regardless of the

pathway chosen to link these two points.
When one of the two functions U(x, y) or L(x, y) is known, the other may

be determined to the closest additive constant. Moreover, the equipotential
lines Uu and flow lines Ll are orthogonal.

By orienting the equipotential lines Uu in increasing order with respect
to the flow lines Ll, and the latter in decreasing order with respect to the
equipotential lines, i.e. in the direction of force

−→
F (M), at all points M, we

obtain (
−→
ds

L
,
−→
dsU) = p/2, where

−→
ds

L
and
−→
dsU are the elementary vectorial

displacements on the corresponding lines indicated by the subscripts.
The sum F = U + jL then becomes a regular function of the complex

variable z = x+ jy, while function F represents the complex potential of the
solenoidal field derived from potential U.

It should be noted that, due to the linearity of the gradient operator, any
linear combination of elementary complex potentials (representing plane
solenoidal fields derived from a potential) is in turn a complex potential
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B. Force and potential fields

function. Note also that the associated equations B.8a and B.8b enable
permutation of the roles of the two functions. If we consider lines Ll as
being equipotential, Uu are the corresponding flow lines.

2.2.2 • Examples of complex potentials

Let us consider the following very simple examples:
The parallel complex potential. The complex function F(p) = z = x+jy =

U(p)+ jL(p) is representative of a plane parallel field, as denoted by subscript
(p). The equipotentials and flow lines are x = u and y = l, respectively, with
u and l being constant. The lines of force are thus parallel to the Ox axis and
the equipotentials are parallel to Oy. The constituents of force

−→
F (p)(M) are:

−→
F (p)(M)⇒

F(x) = 1

F(y) = 0

The work required to get from any point of equipotential x = u to any
point of equipotential x = u + k is equal to k, and the flow between any
point of y = l and y = l + n is equal to n, where k and n are arbitrary
constants.

The radial complex potential. With z = rejw, function F(r) =

(k/2p) log z = (k/2p) log(rejw), where k is a positive or negative con-
stant, represents the plane field with radial lines of force, as denoted
by subscript (r). This potential may be formulated as follows: F(r) =

(k/2p)(log r + jw) = U(r)(r)+ jL(r)(w)

To the closest coefficient k/2p, the equipotentials are concentric circum-
ferences log r ∝ u with, as centre, the origin of axes from which stem lines
of force according to radii w ∝ l (n.b. u and l are constant).

Force
−→
F (r)(M) on radius

−→
OM of the unit vector−→n is:

−→
F(r)(M) =

∂U(r)

∂r
−→
n =

k

2p

1

r
−→
n

The force flow through each circumference remains steady and equal to k.
This flow can also be obtained by: L(w = 2p)− L(w = 0) = k. The origin
behaves as a source if constant k is positive, but as a sink if it is negative.

The hyperbolic complex potential. The complex function F(h) = z
2
=

(x+ jy)2 can also be expressed by the following equation:

F(h) = (x2
− y2)+ j2xy = U(h) + jL(h)

This is a flat plane with hyperbolic lines of force, as denoted by (h). The
equation for the equipotentials is U(h) = x2

− y2
= u and that for the flow

lines is L(h) = 2xy = l, with u and l being constant. These equations
define two orthogonal hyperbola families. The equipotential asymptotes are
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3. Meridional fields

bisectors (lines y = ±x) of axes Ox and Oy, and those of lines of force are
the axes themselves.

The constituents of force
−→
F (h)(M) are thus:

−→
F (h)(M)⇒

[
F(x) = ∂U(h)/∂x = +2x

F(y) = ∂U(h)/∂y = −2y

]
The origin is a specific but non-unique point. Derivative dF(h)/dz = 2z

is definite and continuous and is cancelled out. On each axis of reference
frame Oxy, the force changes direction as it passes the origin, which is a flow
stagnation point, i.e. a convergence point on Oy and divergence point on
Ox.

3 • Meridional fields

Fields are said to be ‘meridional’ when the lines of force and equipotential
lines are encompassed in hemispheres delimited by a line, i.e. the field’s axis
of revolution. In other words, the equipotential surfaces and associated flux
tubes rotate around this axis. We will assess the different properties of these
fields using the same approach as that used for plane fields.

Let us consider the orthonormal reference frame Oxyz. Ox is the axis of
revolution that can generate equipotential surfaces and flows from the cor-
responding lines occurring on the half-plane y ≥ 0 of Oxy. The proper-
ties of the meridional fields are also studied, as for plane fields, on the basis
of the functions of flows and potential, but the association equations (B.8a
and B.8b) are different.

3.1 • Associative relations between flows and meridional potentials

On the half-plane y ≥ 0 of Oxy, where the force constituents and coordi-
nates of the point of application are:

−→
F (M)⇒

F(x)

F(y)

M⇒
x

y

Force
−→
F is tangential to the flow line Ll at point M. In the trihedron

Oxyz, Ã denotes the longitude of the field whose origin meridian is the
upper meridian of axis Oy, where the axis of revolution Ox is considered
as a polar axis of the studied field.

Let ∂L = dL∂Ã be the variation in flow corresponding to the differential
dL = (∂L/∂x)dx + (∂L/∂y)dy at point M along the element of circumfer-
ence y

−→
∂Ã. This corresponds to the flux of the force

−→
F (M) through a conical
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B. Force and potential fields

element whose sides are the portion of arc y
−→
∂Ã and the portion of curve

−→
dsU(dy,−dx) orthogonal to the force

−→
F (M). The flow through the annular

surface generated by a complete rotation around Ox of element
−→
dsU can be

formulated by the following equation:

2pdL = 2py(−F(y)dx+ F(x)dy)

At the considered point M, we thus have:

dL(x, y) = −yF(y)dx+ yF(x)dy

and the consituents of
−→
F (M) may be expressed in the Oxy plane by:

−→
F (M)⇒

F(x) = +
1

y
·
∂L

∂y

F(y) = −
1

y
·
∂L

∂x

Moreover, if U(x, y) is the function representing the equipotential line
passing through M, we obtain the following association equations:

F(x) =
∂U

∂x
= +

1

y
·
∂L

∂y
(B.9a)

F(y) =
∂U

∂y
= −

1

y
·
∂L

∂x
(B.9b)

These equations may be compared to those formulated for plane fields
(B.8a and B.8b). Lines Uu and Ll cross at a right angle, but are not inter-
changeable.

Based on equations B.9a and B.9b, and by crossed derivation in order to
successively eliminate functions L and U, we obtain:

∂2U/∂2x+ ∂2U/∂2y+ y−1∂U/∂y = 0 (B.10a)

∂2
L/∂2x+ ∂2

L/∂2y− y−1∂L/∂y = 0 (B.10b)

It is possible to verify the equivalence of equation (B.10a) and the Laplace
equation. Let us consider the trihedron OXYZ obtained by considering
X = x, Y = y cos Ã and Z = y sin Ã (plane OXY coincides with Oxy for
Ã = 0). This gives us, first:

y2
= Y2

+ Z2
⇒ y · dy = Y · dY+ Z · dZ

where
∂y

∂Y
=

Y

y
= cos Ã
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and

∂y

∂Z
=

Z

y
= sin Ã

and, secondly:

tan Ã = Z/Y⇒ y · dÃ = − sin Ã · dY+ cos Ã · dZ

where ∂Ã/∂Y = −y−1 sin Ã and ∂Ã/∂Z = y−1 cos Ã

Then we obtain:
∂U

∂X
=

∂U

∂x
∂U

∂Y
=

∂U

∂y
cos Ã−

∂U

∂Ã

sin Ã

y
∂U

∂Z
=

∂U

∂y
sin Ã+

∂U

∂Ã

cos Ã

y

When considering the fact that the flow is meridional (potential U is
independent of Ã, thus ∂U/∂Ã = 0), then by a second derivation we get:

∂2U

∂2X
=

∂2U

∂2x
∂2U

∂2Y
=

∂2U

∂2y
cos2

Ã+
∂U

∂y

sin2
Ã

y
∂2U

∂2Z
=

∂2U

∂2y
sin2

Ã+
∂U

∂y

cos2
Ã

y

By addition, we note the equivalence with equation (B.10a):

DU =
∂2U

∂2X
+

∂2U

∂2Y
+

∂2U

∂2Z
=

∂2U

∂2x
+

∂2U

∂2y
+

1

y

∂U

∂y
= 0 (B.11a)

The fact that the two equations B.10a and B.11a are identical indicates that
the flux of the force is constant between two tubes rotating around axis Ox.
When parameters x and y are constant, function U(X, Y, Z) does not vary
when point M of coordinates (X = x, Y, Z) describes a parallel of radius
y around Ox. U is called a zonal harmonic function, which means that it
satisfies the Laplace equation with no right side and its value is independent
of angle Ã, i.e. the longitude of the field.

However, the associated function L(X, Y, Z) is not harmonic because, by
affecting L in the same way, it becomes:

DL =
∂2

L

∂2X
+

∂2
L

∂2Y
+

∂2
L

∂2Z
=

∂2
L

∂2x
+

∂2
L

∂2y
+

1

y

∂U

∂y
(B.11b)

309



B. Force and potential fields

If we then take equation B.10b into account:

DL =
2

y

∂U

∂y
6= 0

The Laplace operator of L is thus not zero, but the flow function L is
independent of Ã, like U.

Hence, for functions U and L to form a joint set (U; L) of a meridional
field such that U is a zonal harmonic function and L is a flow function, they
must be associated via equations B.9a and B.9b.

The linearity of equations B.10a and B.10b gives rise to the following prop-
erty: if sets (UA; LA) and (UB; LB) are two distinct meridional fields, the
linear combination of these fields (UA + cUB; LA + cLB), where c is a pos-
itive or negative constant, also represents a meridional field (UC; LC). This
property is especially useful for determining a potential from the elementary
fields of the different forces present.

3.2 • Meridional fields and Legendre polynomials

A meridional field (U; L)n is said to be homogeneous and of degree n if
potential U is a homogeneous function of x and y, and of degree n. Because
of the linear association equations B.9a and B.9b, function L is obviously of
degree n+ 1.

Generally, when m = x/r, the homogeneous zonal harmonic functions of
degee n are of the form U = rnfn(m).

If we take equations r2
= x2
+ y2 and m = x/r into account, then:

dr = mdx+
√

1− m
2 dy

dm =
dx

r
−

x

r2 dr =
1

r3 (y2dx− dy · dy)

Association equations B.9a and B.9b, expressed as a function of r and m,
may be formulated as:

∂U

∂r
m+

∂U

∂m

y2

r3 =
1

y

(
∂L

∂r

√
1− m

2 −
∂L

∂m

xy

r3

)
∂U

∂r

√
1− m

2 −
∂U

∂m

xy

r3 = −
1

y

(
∂L

∂r
m+

∂L

∂m

y2

r3

)
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By solving the system with ∂U/∂r and ∂U/∂m, we obtain:

r2 ∂U

∂r
= −

∂L

∂m

(B.12a)

(1− m
2)

∂U

∂m

= +
∂L

∂r
(B.12b)

By cross derivations and eliminating L, we obtain the following Legendre
differential equation, which is equivalent to that of Laplace for homogeneous
functions (B.11a):

(1− m
2)

d2fn
d2

m

− 2m

dfn
dm

+ n(n+ 1)fn = 0 (B.13)

The general solution may be obtained by knowing the particular solution
of this equation. This is the case when n is an integer, and then the integral
is a so-called Legendre polynomial of degree n and generally denoted by
Pn(m).

The first polynomials are cumulatively formulated. For the first ones, we
obtain:

P0(m) = 1

P1(m) = m

P2(m) = (3m
2
− 1)/2

P3(m) = (5m
3
− 3m)/2

P4(m) = (35m
4
− 30m

2
+ 3)/8

· · · = · · ·

It may be noted that they obey the following recurrence equation:

(n+ 1) · Pn+1(m)− (2n+ 1) · m · Pn(m)+ n · Pn−1(m) = 0

One important feature of meridional fields, assuming that the axis of
revolution Ox is the stream line, is that they may be determined from
plane fields when axis Ox is recognized as both the stream line and the
symmetry axis. It is demonstrated that transformation of the plane potential,
as represented by a complex function F(z) with z = x+ jy, into a meridional
potential U occurs via the integral:

U =
1

p

∫
p

0
F(x+ jy cos Ã)dÃ (B.14a)

In the case of a plane field defined by a homogeneous function F(z) of
degree n relative to z, the integral equation B.14a necessarily determines
a homogeneous meridional field of the same degree. When taking, for
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instance, the flat field represented by the complex function F(z) = z
n, where

n is an integer, with m = x/r we obtain the meridional field:

U(n) =
1

p

∫
p

0

(
x+ jy cos Ã

)n dÃ

=
rn

p

∫
p

0

(
m+ j

√
1− m

2 cos Ã

)n

dÃ (B.14b)

The latter term is the product of rn via a m polynomial which turns out
to be the Legendre polynomial of degree n, i.e. the only integral polynomial
of the Legendre differential equation (A2.13), hence the Pn(m) integral equa-
tion:

Pn,(m) =
1

p

∫
p

0

(
m+ j

√
1− m

2 cos Ã

)n

dÃ (B.15)

It is thus possible to demonstrate that the entire potential of a meridional
field can be developed in a series of homogeneous functions in the vicinity
of an ordinary point on the axis of revolution. In other words, in a connected
space around a point (which is not unique on the axis of the meridional field,
e.g. source or sink), all zonal harmonic functions can be expanded from
Legendre polynomials. This property may be demonstrated on the basis of
a number of hypotheses (in particular, the symmetry axis should be the line
of force and the reference frame origin cannot be a unique point) and of the
Legendre polynomial integral equation B.15.

Where F(z = x + jy) is the analytic function defining the field in plane
Oxy (y ≥ 0), which is true when variable z is true. Potential F(z = 0) is
considered as the unity of the potential with a true value. The expansion of
function F(z) around origin O, which is an ordinary point of the field, may
be expressed by:

F(z) = 1+
n=N∑
n=1

bnz
n (B.16a)

where N is the integer whose value can range from unity to infinity depend-
ing on the nature of function F(z), with bn being the constants.

The corresponding meridian potential is expressed by:

U(r, m) = 1+
n=N∑
n=1

bnrnPn(m) (B.16b)

As the potential at origin O was selected as the unity of the potential,
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equation B.16b may also be formulated as:

U(M)/U(O) = 1+
n=N∑
n=1

bnrnPn(m) (B.16c)

This result is essential for understanding the role of Legendre polynomials
in studies on homogeneous meridian fields.

4 • Examples of meridional fields

As for plane fields, a practical representation of sets (U; L) is obtained by
plotting curves Uu and Ll on the half-plane Oxy (y ≥ 0). The difference
with respect to plane fields is due to factor y−1, which is present in associ-
ation equations (A2.09.a and b). This factor hampers permutation of roles
between force and equipotential lines, as in plane fields.

We will now provide examples related to the potential of the tide-
generating force, corresponding to a given celestial body.

4.1 • Parallel meridional fields

The lines of force are parallel to the axis of revolution. As for plane fields,
the corresponding meridional fields are also represented by subscript (p).
We have seen that a plane field with lines of force parallel to axis Ox is
expressed by the complex potential on plane Oxy:

F(p) = z = x+ jy = rejw

A meridional field accepting the same lines of force is obtained with
functions L(p) and only depends on y on the Oxy plane, and equation B.9b
gives:

F(y) = −
1

y

∂L(p)

∂x
=

∂U(p)

∂y
= 0⇒ DU(p) =

∂2U(p)

∂2x
= 0

where:

U(p) = x = r cos w⇒ F(x) = ∂U(p)/∂x = 1

For associated lines of force L(p), we thus have:

dL(p) = y(−F(y)dx+ F(x)dy) = ydy⇒ L(p) = y2/2 = (r sin w)2/2

A meridional field whose lines of force are parallel to the axis is thus
represented in Oxy by the set: (U(p); L(p)) = (x; y2/2).

This meridional field accepts planes x = u as equipotential surfaces, and
cylindrical surfaces with axis Ox and radius y =

√
2l as tubes of force, while

u and l are constant.
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B. Force and potential fields

The work of the force between any two points located on planes x = u0
and x = u1, respectively, is equal to u1 − u0. The flow between two tubes
of force of radius y =

√
2l0 and y =

√
2l1, respectively, is equal to

2p(l1 − l0).
Here a homogeneous first-order function represents the potential:

U(p)(M) = x = rm (B.17a)

The integral equation B.14b representing this meridional field in the Leg-
endre polynomial can be immediately verified:

U(p) =
r

p

∫
p

0
(m+ j

√
1− m

2 cos Ã)dÃ = rm = rP1(m) (B.17b)

4.2 • Radial meridional fields: force source or sink

In a plane field, we have seen an example of a radial complex potential, as
denoted by subscript (r) F(r) = U(r)(r)+ jL(r)(w) = (k/2p)(log r + jw)

This plane potential is representative of a source if k > 0, or of a sink
if k < 0. Circumferences centred on the origin are equipotential and their
radii are lines of force (radial force).

For symmetry reasons, the comparable radial meridional field accepts
concentric spheres around the origin as equipotential surfaces, and half-
lines deriving from the centre (anticlockwise from the origin at the point
of force application) as lines of force. In the half-plane Oxy (y ≥ 0), where
the complex coordinates of point M are x+ jy = rejw with w ranging from 0
to p, the potential Ur is only a function of r and Lr or of w.

The flow, which must remain the same through all spheres centred on the
origin, involves a normal force at the sphere that is inversely proportional to
the square of the radius of this sphere. Where k is the value of this flow, we
thus have:

−→
F (r)(M) =

dU(r)

dr
−→
n =

k

4pr2
−→
n ⇒ U(r) = −

k/4p

r
F(x) = F(r) cos w; F(y) = F(r) sin w⇒ dL = −F(r)y(sin w dx− cos w dy)

with F(r) = ‖
−→
F (r)‖ and−→n as unit vector of

−→
OM

Since:

dx = cos wdr − r sin wdw

dy = sin wdr + r cos wdw

then:

dL(r) = (k/4p) sin wdw⇒ L(r) = −(k/4p) cos w
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4. Examples of meridional fields

Hence, to the closest factor k/4p, we obtain the representation of the
radial meridional field by the pair of functions:

(U(r); L(r)) ∝ (−1/r;− cos w)

As for the corresponding plane field, there will be a source when k is
positive and a sink if it is negative. In 3D space, tubes of force are rotating
conical surfaces having origin O as apex and w as half angle. All of these
cones therefore cross the equipotential spheres at a right angle.

In many applications, it is often easier to study the structure of this type
of field in the vicinity of a singular point in the field (source or sink). Here
we will alter the conventions in order to examine the formulation of the field
around point T. The reference frame that has so far been represented by
Oxyz will now be denoted OXYZ; reference frame Txyz will be that which
has point T as origin, with its axes parallel to those of OXYZ; and the
direction

−→
TO will be the axis of revolution of this radial field.

Where rO = ‖
−→
OT‖, i.e. the distance between the two origins, the value of

the x-axis of point T on OX is considered to be−rO.
In the half-plane common to Txy (y ≥ 0) and OXY (Y ≥ 0), with a

point M being distances r and a from points O and T, respectively, and with
a/r � 1, we have:
• in OXY (Y > 0) :

−→
OM⇒ X+ jY = rejw

• in Txy (y > 0) :
−→
TM⇒ x+ jy = aeju

The matrix equation of constituents of vector
−→
MO in the two reference

frames and its complex representation in Txy may be formulated as follows:

−→
MO⇒

[
−X

−Y

]
=

[
rO − x

0− y

]
⇒ (rO − x)− jy = rO(1− z)

where

z = aeju with a = a/rO � 1 (B.18)

When m = x/a = cos u, distance r is thus given by:

r2
= (x− r0)

2
+ y2
= r2

0(1− 2am+ a
2)

Potential U(r)(M) at point M, relative to that at point T, which is non-zero
and equal to U(r)(T) = k/4prO, can be expressed as:

U(r)(M)

U(r)(T)
=

1√
1− 2am+ a

2
(B.19a)

Note that, as the computations are done in the reference frame of origin T,
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B. Force and potential fields

there is an inversion of the sign of parameter k in its relation with the singular
point of the radial field (positive sign for a sink, negative for a source).

As point T is on the axis of revolution z(T) = 0, its complex potential is
true with F(r)(T) = U(r)(T). When taking the complex expression of vector
−→
MO in (A2.18) into account, the complex potential F(s)(M) in the Txy plane
may be expressed in the following form:

F(r)(M)

U(r)(T)
=

1

1− z

= 1+
n→∞∑
n=1

z
n

Because of the property summarized by equations (B.16a) and (B.16c),
potential U(r)(M) relative to that of T is thus expressed in Txyz by the
following Legendre polynomial series:

U(r)(M)

U(r)(T)
= 1+

n→∞∑
n=1

a
nPn(m) (B.19b)

As B.19a and B.19b are equivalent equations, we may deduce:

1√
1− 2am+ a

2
= 1+

n→∞∑
n=1

a
nPn(m)

where

|2am− a
2
| � 1 (B.20)

All radial meridional fields – thus with spherical equipotential surfaces –
generated by a sink (or a source), thus develops from an ordinary point in
the space by a harmonic Legendre polynomial series (B.19b), where the line
joining the ordinary point to the singular point is the axis of the field.

4.3 • A meridional field of hyperbolic a2P2(m) shape

Recall that, for a given celestial body A (Moon or Sun), the tide-generating
force at a point M is the difference in gravitational attraction exerted by this
celestial body at point M (radial force of direction

−→
MA, therefore depending

on the position of the point on Earth) and at the Earth’s centre T (force of
constant intensity at all M points and with a fixed direction parallel to TA).
The fields of these two forces have

−→
TA as symmetry axis.

The tide-generating potential associated with a given celestial body is thus
the difference between a radial field U(r) and a parallel field U(p).

For any radial meridional field U(r), we have just seen that equation B.19b
may be applied to express the potential of any point M in the vicinity of
any ordinary point on the axis of revolution. As the Earth’s centre T is an
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4. Examples of meridional fields

ordinary point of the gravitational field generated by celestial body A (force
sink), its potential U(r)(T) may be expressed by:

U(r)(T) ≡ VA(T) = kmA/rA

where VA(T) is the attraction potential at T generated by celestial body A,
where k is the universal gravitation constant, mA is the mass of the celestial
body, and rA is the distance between the centres of the Earth and the celestial
body. For a point M on the Earth’s surface (a = aT, Earth’s radius),
equation B.19b becomes:

U(r)(M)

VA(T)
= 1+

n→∞∑
n=1

a
nPn(m) (B.21)

where a and m have the same definitions, distances rO and a have been
respectively replaced by rA (origin O at the centre of celestial body A) and
by aT, the Earth’s radius.

With respect to the parallel meridional field, with a force equal to unity
and parallel to the axis of the field, the corresponding potential U(p) is given
by equation B.17a. When considering that the conventions applied to work
in the reference frame of origin T, and also that the second force applied in
M is constant (kmA/r2

A) and of fixed direction
−→
TA (tractive force of reference

body Txyz), the potential of the corresponding parallel field U(p)(M) can be
expressed as:

U(p)(M)− U(p)(T) =
kmA

r2
A

x =
kmA

rA

aT

rA
cos u

where:

U(p)(M)− U(p)(T) = VA(T)aP1(m) (B.22)

As the potentials are defined to the nearest constant, then let:

U(p)(T) = VA(T) =
kmA

rA

The last relation of B.22 can thus be expressed by:

U(p)(M)/VA(T) = 1+ aP1(m) (B.23)

The difference between the two elementary fields B.21 and B.23 hence
gives the tide-generating potential at the Earth’s surface generated by celes-
tial body A, as:

U(s)(M)− U(p)(M)

VA(T)
=

n→∞∑
n=2

a
nPn(m) (B.24)
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B. Force and potential fields

The terms of series B.24 rapidly decrease with a � 1, and it is also
relevant to study the meridional field relative to the terms in a

2P2(m).
Hereafter, distance rA is assumed to be constant, but we consider that the

distance TM is variable. In order to avoid confusing it with the Earth’s radius
aT, we will switch back to the initial designation a. Then, where subscript m
denotes the tide, let:

U(m) = r2
Aa

2P2(m) = a2P2(m)

With multiplicative factor kmAr−3, Um represents the tide potential gener-
ated by celestial body A.

Note that, via the integral B.14b, this meridional field corresponds to the
plane hyperbolic field F(z) = z

2. This field U(m) can be readily studied by
examining the intersections of the equipotential surfaces and tubes of force
with the plane Txy. Let us recall the relations between the Cartesian and
polar coordinates of a point M on this plane:

x/a = cos u = m avec a2
= x2
+ y2

The part of the field represented in figure B.1 is that of the quadrant with
coordinates x and y being positive, i.e. corresponding to 0 ≤ u ≤ 90°. Traces
in plane Txy of equipotential surfaces correspond to lines in equation:

U(m) = a2P2(m) = a2(3 cos2
u− 1)/2 = u

with u being constant, is:

U(m) =
2x2
− y2

2
= u

Equipotential surfaces generated by the rotation of these lines around Tx
form two rotational hyperboloid families having the same asymptotic cone
of apex T. This conical surface is therefore at the same potential as point T,
which was adopted here as the reference potential, with u = 0. The traces
of this conical surface in Txy are the lines of equation y = ±x

√
2. The half-

angle at apex u0 is determined by:

cos u0 = 1/
√

3⇒ u0 = 53°44

In the box in figure B.1, this pair of lines corresponds to traces whose
colour is referenced by p(0), i.e. a potential of zero value u = 0. This is
the location of points where the flow (or force) lines are tangential to spheres
centred on T.

When u < 0, equation y2
= 2(x2

−u) is always positive and the first family
of equipotential surfaces is made up of one-sheeted rotational hyperboloids.
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B. Force and potential fields

The corresponding traces shown in figure B.1 are curves p(u), where u is
negative.

When u > 0, the values of function y2
= 2(x2

− u) are only positive
for x2 > u. The second family of equipotential surfaces is made up of two-
sheeted rotational hyperboloids. In figure B.1, their corresponding traces
are curves p(u), where u is positive.

In plane Txy, the coordinates of M and the constituents of force
−→
F (m)(M)

may be expressed by:

M⇒
x

y

−→
F (m)(M)⇒

F(x) = ∂U(m)/∂x = 2x

F(y) = ∂U(m)/∂y = −y

Noting that F(x) is twice the x value of M, i.e. the point of application of
the force, and F(y) is minus the y value of M, we obtain the result of Proctor’s
rule, with the celestial body at infinity.

The modulus of
−→
F (m) is thus a

√
3 cos2

u+ 1.
With a = aT and to the nearest multiplicative factor, g(mA/mT)(a2

T/r3
A)

is the equation formulated by Proctor. Proctor’s rule thus corresponds to
the expression of the tide-generating potential limited to the first term in
P2(cos u).

Decomposition of force
−→
F (m) according to

−→
TM and the tangent at the

circumference passing by M (which corresponds to a rotation u of reference
frame Txy) gives the vertical constituent F(z) and horizontal constituent F(j),
respectively, or:

F(j) =
1

a

∂U(m)

∂u

= −3a cos u sin u = −
3

2
a sin 2u

F(z) =
∂U(m)

∂a
= 2aP2(cos u) = a(3 cos2

u− 1)

The absolute value of the horizontal constituent F(j) (which affects the
tide) is zero on axis Tx (u = 0° and 180°) and on the equatorial plane of
the field (u = 90°); it is maximum for u = 45° and 135°.

The vertical constituent F(z), like P2(cos u), is zero on the asymptotic cone
cos u0 = 1/

√
3⇒ u0 = 53°44. The absolute value has two maximums, i.e. a

main one on axis Tx (u = 0° and 180°) and a secondary one on the equatorial
plane of the field, which is that of the great circle where the celestial body can
be seen on the horizon (u = 90°). For this second maximum, the force is
always directed towards the centre T (zero horizontal constituent).

Flux tubes rotating around Tx can be studied in the same way as equipo-
tential surfaces. Equations of their traces in Txy are deduced from associa-
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4. Examples of meridional fields

tion equations B.9a and B.9b to the nearest constant:

∂L(m)

∂y
= +y

∂U(m)

∂x
= 2xy⇒ L(m)= = xy2

or

∂L(m)

∂x
= −y

∂U(m)

∂y
= y2

⇒ L(m)= = xy2

In Txy, the equations for the lines of flow are thus: L(m) = xy2
= l, where

l is constant.
In Txy, the lines of force are of the 3rd degree and have a hyperbolic shape.

The structure of the corresponding tubes resembles a family of two-sheeted
rotational hyperboloids which have axis Tx, i.e. the flow line (l = 0, with
y = 0), and the equatorial plane of the field, i.e. the flow surface (l = 0,
with x2

= 0), as asymptotes. The flow sheets l and−l are symmetrical with
respect to the plane x = 0, i.e. the equatorial plane of the field. Hence, when
the absolute values of the respective x-axes cross, the flow lines are oriented
in opposite directions. In positive quadrants x and y (see figure B.1), the
lines of force correspond to positive values of l. Curve f (l) represents the
flow line for the corresponding positive value l.

The quarter circumferences, with radii a = 4 and a = 8, respectively, may
be plotted to obtain a clearer view of the structure of this ‘tidal’ meridional
field associated with celestial body A, relative to spheres of centre T.
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C

Stilling wells

Studying an entire stilling well system is a highly complex process. The
response of the well depends on the dimensions and forms of its different
elements (well, intake opening and pipe), as well as on the internal and
external hydrodynamic conditions (viscosity, head loss, waves, currents,
density differences). Moreover, because of environmental conditions at the
well site, problems of fouling, concretions or silting around the intake or the
pipe often arise.

Very few authors have focused on this issue, apart from O’Brien (1950),
Lennon (1967), Cross (1968), and especially Noye (1968, 1970, 1972, 1974a,
b & c). A stilling well equation will first be formulated to represent the
response of the well (internal water level) in its simplest configuration (pipe-
less well with an intake and assuming zero viscosity for sea water). Then the
equation will be extended to represent wells equipped with a pipe (so-called
‘pipe wells’) and taking into account the liquid viscosity and the roughness
of the pipe surface. A very simple digital model of the response of a well of
clearly defined dimensions will then be applied to two cases (a pipeless well
with an intake and a pipe well), while assuming that the external excitation
(tide or swell) is completely sinusoidal.

1 • Stilling well equation

The equation formulated below is based on Noye’s first work on wells with
an intake directly interconnected with the sea – this is the most common
type of stilling well.

Let us consider a coastal site where the depth is H (relative to the mean
level) and where h(t) represents the sea level variation (from zero mean:
h(t) = 0), with the variation being positive according to the upward vertical.

323



C. Stilling wells

z0

zM

pa

pa

H

O

M

S

D

d

 dhp

dt
h(t)

MSL hp(t)

η(t)

v

seabed

Figure C.1: Diameter of a pipeless stilling well of diameter D, where the intake opening
O (diameter d) is directly connected with the sea. The notations are outlined in the text.
MSL: mean sea level h(t) = 0.

A cylindrical well of diameter D has a circular intake opening of centre
O and diameter d located at a mean depth of z0 (fig. C.1), which is below
the lowest low water. Hence, the mean sea level is at the z0 mark (always a
positive value) relative to point O. Let h(t) denote the error in h(t) relative
to hp(t), i.e. the level in the well at time t, or:

h(t) = h(t)− hp(t) (C.1)

We also assume that sea water is a perfect, incompressible and isothermal
liquid, therefore of constant density r and zero viscosity (y = 0).

Within the well, at all points M of height zM relative to the intake and
subjected to pressure pM, velocity vM derived from potential FM along
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1. Stilling well equation

the stream line and running through M (flow thread OMS in figure C.1,
with point S being at the water surface in the stilling well), the generalised
Bernoulli equation may be formulated as:

∂FM

∂t
+

1

2
v2

M + gzM +
pM

r

= f (t) (C.2)

As function f (t) is the same along this line, equation (C.2) applied at
points S and O, respectively, gives equation:

∂FS

∂t
+

1

2

(
dhp

dt

)2

+ g(z0 + hp)+
pa

r

=
∂FO

∂t
+

1

2
v2

O +
pO

r

(C.3)

In this latter equation, pa is the atmospheric pressure at S, with pO and vO
respectively representing the liquid pressure and velocity (positive direction
towards the well) at the intake O.

Further hypotheses must be put forward to determine pressure pO. We
assume that currents around the well do not induce a Venturi effect and
that only the variable constituent of pO is associated with the surface wave
h (which is assumed to be sinusoidal: waves, swells, seiches, tides). The pres-
sure associated with this gravitational wave is a function of the immersion of
intake O. In addition to this immersion, equal to z0, the transmission factor
kO (while taking the exponential attenuation of the pressure into account) is
also a function of the number k of the wave, or:

kO =
cosh[k(H− z0)]

cosh(kH)
≈ exp(−k

2z0H)

kO ≈ 1− k
2z0H (C.4)

with k
2z0H� 1.

This coefficient is equal to 1 for very long wavelengths (e.g. tidal).
The pressure around the intake can thus be expressed by:

pO = pa + rg(z0 + kOh) (C.5)

Considering the convention chosen for the sign of velocity vO, the conti-
nuity equation is formulated as:

D2(dhp/dt) = d2
· vO ⇒ vO = (dhp/dt)/r2 (C.6)

where r = d/D.
Equation (C.3) then becomes:

∂(FS −FO)

∂t
= g(kOh− hp)+

1

2

[
dhp/dt

m

]2

(C.7)
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where

m2
= r4/(1− r4) (C.8)

The left side of equation (C.7) may be estimated by integration of velocity
vM along the stream line (line OMS). If the well is long and narrow (D� z0),
the first-order velocity in the well is dhp/dt and the distance OS can be
assimilated to z0 + hp. With these approximations, we have:

FS −FO ≈ (z0 + hp)(dhp/dt) (C.9)

and equation (C.7) is expressed by:(
dhp

dt

)2

= g
2m2

1− 2m2 (kphp − kOh) (C.10)

where

kp = 1+
z0

g

d2hp/dt2

hp
(C.11)

Equation (C.10) is the so-called ‘stilling well equation’ for a liquid of zero
viscosity that is directly connected with the sea.

Coefficient kp represents the inertia of the well. For a sinusoidal wave with
angular velocity v and wave number k , the two coefficients kp and kO are
the same magnitude. Based on the hypotheses put forward and the Laplace
dispersion equation, for gravitational waves expressed by:

v
2
= gk tanh(kH) (C.12)

it turns out that:

kp ≈ 1− (z0/g)v2
= 1− kz0 tanh(kH) ≈ 1− k

2z0H (C.13)

Based on the definition (C.4) of kO, for a completely sinusoidal wave we
thus obtain:

kp ≈ kO (C.14)

Since it is not easy to model equation (C.10) (difficulty in determining
coefficients kp and kO), we accept that kp = kO = 1 and r = d/D� 1 (and
thus m ≈ r2), and therefore the well equation (C.10) may be simplified to:

dhp

dt
=

d(h− h)

dt
= mh

√
2g

|h|
(C.15)

and:

dh

dt
+mh

√
2g

|h|
=

dh

dt
(C.16)
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1. Stilling well equation

where h is the error defined in (C.1).
This latter equation may also be obtained by assuming that velocity vO, as

defined by the continuity equation (C.6), is at all times equal to velocity v
given by Torricelli’s equation:

v2/2 = g|h| (C.17)

This means that the hydrostatic hypothesis is satisfied while disregarding
the inertia in the well (thus the immersion of the intake opening).

Sea water is actually not a perfect liquid. When taking the kinematic
viscosity coefficient into account, N (1974,b) demonstrated that it is
possible to build a well with a pipe of length l and having a linear response.
For relatively low frequencies (especially tidal frequencies), the response
time is dependent only on the well characteristics. The subsequent phase lag
correction required for each tidal constituent is not problematic when using
modern computation methods. To build such a system, however, a perfectly
smooth (no roughness) pipe of very long length l relative to its diameter d
(l > 102d) would be necessary to preserve the flow, which is always laminar.
Maintenance of this system would also not be easy due to fouling and silting
problems.

Flow through the intake is often turbulent even in pipeless wells. Hence,
when the error value |h| is constant, depending on whether we are consid-
ering inflow or outflow, the turbulence is not the same and the intake cross
section is modified in all cases. The result is that the corresponding veloc-
ity moduli differ. This can be explained by the fact that part of the kinetic
energy is lost via heat dissipation. To simplify the equations representing
energy conservation along a stream line, this effect is generally represented
by a decrease in the theoretical pressure gradient (obtained for the flow of
a perfect liquid). The integral for this gradient error throughout the stream
line reflects a drop in potential, or ‘head loss’ in the well. It is also essential
to ensure that the geometry of the intake connected with the sea (directly or
via a tube) promotes flow with minimal turbulence.

Hereafter we will assess digital model results applied to a well with clearly
defined features (with a pipe or pipeless), while taking the type of flow into
account. The flow will be considered as being laminar for pipeless wells. For
pipe wells, the pipe roughness will be taken into account, and the regime will
be laminar or turbulent, depending on the flow velocity.
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C. Stilling wells

2 • Digital modelling of the system

A simple but adequate digital model of a well’s response to clearly defined
characteristics can be developed in order to quantify and possibly reduce
the error (by changing the well characteristics) so as to obtain satisfactory
results for tidal constituents.

Assessment of the head loss that may occur when water passes through
the intake or pipe is a complex problem to solve. It involves the turbulence
of liquid flows whose physical aspects can only be partially controlled in real
situations. It is however still possible to draw on empirical (but experimen-
tally based) results, which are widely accepted for solving this type of prob-
lem. We will briefly look a these results, which will be used in the models
presented.

2.1 • A brief review of liquid flows through tubes

Dimensional analysis methods provide a basis for formulating param-
eters whose values are involved in laminar (Poiseuille flow) or turbulent
(hydraulic flow) flow equations. Newton (1713) was the first to study the
viscosity m of a liquid. He came up with the idea of an internal resistance
proportional to the relative velocity of liquid elements sliding over each other
(for water at 20°C: m ≈ 10−3kg/ms). The ratio y = m/r is involved in equa-
tions that express the acceleration of a liquid with laminar flow. This ratio
defines the kinematic viscosity (y ≈ 10−6m2/s for water at 20°). This is
sometimes called the ‘molecular kinematic viscosity’ in order to differentiate
it from the ‘turbulent kinematic viscosity’, which can reach values of around
1011

y, especially for oceanic flows. This turbulence considerably increases
the head loss, which is hereafter denoted pc.

For a given pipe (tube of constant diameter) with smooth walls (zero
roughness), it is logical, from a hydrodynamic standpoint, to assume that
the gradient of head loss per length unit and per mass unit, denoted G =

(dpc/dl)/r, which has the dimensions of an acceleration, is a function of:
• d, the tube diameter,
• r, the liquid density,
• y, the kinematic viscosity coefficient, and
• v, the flow velocity.
All of these quantitative factors are combined in the following equation:

F(G, d, r, y, v) = 0 (C.18a)

This equation is relevant irrespective of the units selected (in a consistent
system). With d for length, r for density, and v for velocity as fundamental
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2. Digital modelling of the system

units, equation (C.18a) leads to an equation between two dimensionless
ratios:

F(Gd/v2, 1, 1, y/vd, 1) = 0 (C.18b)

According to hydraulic conventions, the ‘head loss coefficient l’ is defined
by:

l =
Gd

(v2/2)
=

1

r

dpc

dl

d

(v2/2)
(C.19)

and the Reynolds number Re is defined by:

Re =
vd

y

=
rvd

m

From equation (C.18b), we deduce that the head loss coefficient is a
function of the Reynolds number:

l = f (Re) (C.20)

The Hagen-Poiseuille law, as experimentally determined for the laminar
flow regime, gives:

l = 64/ Re (C.21)

When log(Re) is on the x-axis and log(l) is on the y-axis, the curve
plotted for (C.21) is a straight line up to a certain Re value at which there
is turbulence onset (see figure C.2: Moody diagram). This critical value,
which is dependent on the agitation of the liquid when it penetrates the
tube, increases and the agitation decreases. It is never lower than 2.4 · 103,
but it may be over 104 when there is extreme flow regulation at the tube
intake. Beyond this critical Re value, the curve rises sharply and then slowly
declines. Many authors have studied turbulent flow regimes in smooth tubes.
These experimental results are represented by the lowest curve on the Moody
diagram, and corresponds to the interval (3 · 103, 107) of the Reynolds
number. The equation formulated by Karman for this curve is:

l[log10(Re
√

l)− 0,40]2
= 0,25 (C.22)

In practice, for modelling purposes, it is generally considered that the flow
regime is respectively:
• laminar if Re < 2 · 103,
• turbulent if Re > 4 · 103.
The regime is transitional between these two values. The following rule is

often adopted for computations of hydraulic systems. A laminar flow whose
velocity increases as of zero stays in this state until Re = 4 · 103. Conversely,
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C. Stilling wells

Figure C.2: The Moody diagram (log-log scale) giving the head loss coefficient l as
a function of the Reynolds number Re and the roughness «/d (where f , V and D are
changed to l, v and d, respectively)

when a regime is completely turbulent at the outset, it remains so as long as
Re ≥ 2 · 103 .

The behaviour is more complex when the pipe walls are rough. When e

denotes the characteristic dimension of the pipe roughness, the pipe rough-
ness can be represented by the e/d ratio. The magnitude e is another hard
to evaluate parameter. The millimetre is adopted as the magnitude for mea-
surements in new stilling well pipes, but it turns out to be too small when the
pipe becomes fouled over time. However, as long as condition e/d � 1 is
fulfilled, a highly accurate value is not required for parameter e since rough-
ness has been found to only have detectable effects after a specific Re value
has been reached, which decreases as the roughness increases. Beyond this
value, the head loss coefficient l rapidly increases to a value, which is inde-
pendent of Re and only a function of the roughness e/d. All of these results
are summarized in the Moody diagram (figure C.2).
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2. Digital modelling of the system

2.2 • Digital application to stilling wells with specific characteristics

We have established that a stilling well hydraulic system is a nonlinear
filter. It would be of interest to study variations in the internal level in a well
corresponding to the overlapping of several sinusoidal waves in the external
ocean environment. Unfortunately such a study would require preselection
of critical representative cases, which has yet to be done. Here we will
just present the response of a well to a sinusoidal wave of clearly defined
frequency. The two most common situations (pipeless well and pipe well)
are presented while examining the response of each type to a semidiurnal
wave and then to swells. The well equation is digitally solved in the spectral
domain using the Runge-Kutta method. In the case of a well equipped
with a pipe of constant diameter, the head loss coefficient l is fitted at each
integration step on the basis of the Moody diagram.

Pipeless stilling wells. Stilling wells with an intake connected directly to
the sea (without a pipe) is the most common type. It generally consists of a
single pipe (made of stainless steel or a synthetic material such as PVC), and
the simple first-order equation (C.16) may be applied (the intake immersion
is not taken into account). It is assumed that there is no turbulence effect
around the intake and that the sea water behaves like a perfect liquid.

The only characteristic to account for is the ratio of the diameter of the
intake opening to that of the well (r = d/D). The responses to semidiurnal
waves, which are completely sinusoidal and with amplitudes ranging from
1 m to 7 m, were calculated as a function of the diameter ratio r = d/D.
Figures C.3a and C.3b, which respectively concern the admittances and
phases of the response as a function of the ratio r = d/D, summarize all
of the results of calculations conducted at this frequency.

These results show that with a ratio d/D > 1/25 (4 %) the phase lag
and attenuation are negligible for possible extreme amplitudes (7 m in the
examples shown). For a semidiurnal constituent, it is thus considered that a
phase lag of less than 30 s and an attenuation of less than 0.1 % are negligible.
This conclusion also applies to the diurnal constituent because of its higher
period and to interaction species (quarter-diurnal, sixth-diurnal, etc.) due
to their lower amplitude. However, it is quite likely that the high number
of high-frequency interaction species (present in estuaries) affects the well
response at low frequencies.

The same calculation procedure was applied to assess the impacts of very
high frequency gravitational waves (waves, swells, seiches) on the well level
at different amplitudes (10 cm to 1 m) and periods (1-30 s). The surface
wave is assumed to be completely sinusoidal. As the intake immersion
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Figure C.3a: Well admittance for a semidiurnal constituent. A pipeless well with an
intake: amplitude of the response to a semidiurnal wave. Each curve corresponds to
a specific tidal amplitude (1-7 m) and gives the well response, which is expressed as a
percentage of the input signal as a function of the intake to well diameter ratio r = d/D.

value was not taken into consideration, the effect of the exponential pressure
attenuation (as a function of the immersion) induced by the wave was not
accounted for. The results obtained likely represent an increase in possible
errors. Because of the nonlinear features, the model shows that the well
response reflects a variation in the mean level in addition to the presence
of an internal oscillation of the same frequency as the external wave.

The model results concerning the oscillation constituent of the response
of a pipeless well (ratio d/D = 4 %) are summarized on the graph in
figure C.4.

Concerning the error in the mean levels, the model shows a decrease
within the well which, with a swell of 1 m amplitude, reaches a maximum of
2 cm for a 2 min period. This is an extreme case. This error seldom excedes
5 mm in regular situations.

Pipe stilling wells. Pipe stilling well systems are less common. This type of
well is generally found at permanent tide stations, often very old ones (e.g.
Brest, France).

With this type of well, it is necessary to take into account the head loss
coefficient l and the there are too many parameters to consider to be able to
draw up general laws. The d/D ratio, as well as the ratio of the diameter d
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semidiurnal constituent: phase lag
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Figure C.3b: A pipeless well with an intake: phase lag in the response to a semidiurnal
wave. Each curve corresponds to a specific tidal amplitude (1-7 m) and gives the phase
lag in the well response (in degrees) as a function of the intake to well diameter ratio
r = d/D.

to the length l of the pipe, and the size e of the roughness all have an impact.
The well modelling is complicated because of the need to digitize the Moody
diagram so as to be able to perform calculations according to the flow regime
in the pipe.

The pipe well equation is formulated by introducing the head loss coeffi-
cient l which, for a pipe of diameter d and length l, is as follows:

l =
Gd

(v2/2)
=

d

r(v2/2)
·

dpc

dl
(2.19)

The integral of the head loss gradient over the entire length l gives the total
head loss for pipe pc. Note that the opposite of pc/rg reflects the decrease in
the efficient height reduction. Hence, for the head loss per mass unit:

pc/r = l

l

d

v2

2
(C.23)

This head loss results in reducing the velocity given by the Torricelli equa-
tion (C.17). The equivalent, which is called the Darcy-Weisbach equation, is
as follows:

v2/2 = g|h| − (pc/r) (C.24)

333



C. Stilling wells

period (s)
at

te
nu

at
io

n 
(%

)
0

9

8

7

6

5

4

3

2

1

0

5 10 15 20 25 30 35

0.1 m

0.25 m

0.5 m

1 m

Figure C.4: Case of a pipeless well with an intake to well diameter ratio of r = d/D =
4 %: well response at the external signal frequency. Each curve corresponds to a
constant swell amplitude and gives the amplitude of the oscillation constituent of the
response (as a percentage of that of the input signal)as a function of the swell period.

and when taking (C.23) into account, we obtain:

v2

2
=

g|h|

1+ (ll/d)
(C.25)

The well equation thus has the same form as equation (C.16), or:

dh

dt
+mch

√
2g

|h|
=

dh

dt

with

mc =
r2√

1+ (ll/d)
(C.26)

Figure C.5 shows an example of the impact of the pipe characteristics
(length l and diameter d) on the phase lag (expressed in minutes of mean
time) of the well response in the case of a semidiurnal sinusoidal wave. In
this example, a well diameter of D = 150 cm and signal amplitude of
max |h| = 5 m were taken into account.
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Figure C.5: Case of a well of diameter D = 150 cm with a pipe of diameter d and length
l: well response to a semidiurnal wave of 5 m amplitude. Each curve corresponds to a
constant pipe length l (values: 1-7 m) and gives the phase lag (min of mean time) of the
response as a function of the pipe diameter d (in cm).

The results would differ with other values. The dimensions used here,
however, correspond to realistic values for old existing stilling wells, so the
results represent magnitudes that could be applicable to similar or more
favourable situations.

It should be noted especially that the empirical rule that is often applied,
whereby a r = d/D value of over 1/10 (here d > 15 cm) is acceptable, is
satisfied with respect to the phase lag, regardless of the pipe length. However,
a value of 1/25, or d = 6 cm (r = 4 %), which is acceptable for a pipeless
well intake, is not acceptable for a pipe length of l = 100 cm – the phase lag
would be around 30 s.

Results concerning the response admittance are not presented, but calcu-
lations show that the signal attenuation is negligible when the phase lag is
negligible.

This model of a pipe well response to a semidiurnal wave gives satisfactory
results with respect to the performance of regular stilling wells at low wave
frequencies. However, its capacity to attenuate the swell reveals that the
performances are not as good as those of pipeless wells with an intake having
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Figure C.6a: Well of diameter D = 150 cm with a pipe of length l = 400 cm and
diameter d = 15 cm⇒ r = 10 %: well response at the same frequency as the swell.
At a constant swell amplitude, the amplitude of the response (in %) is calculated as a
function of the period (in s). As compared to the results shown in figures C.4 a and b
(pipeless well r = 4 % , without stress on D), the curves in figure C.6a clearly show the
poor performances of the pipe well (r = 10 %, but with D = 150 cm).

the same parameter r = d/D. When the r = 1/10 value is adopted for a
pipe well (here d = 15 cm), the response gives the different tidal species
correctly, but the swell attenuation rate turns out to be markedly lower than
that obtained with a pipeless well – for which it is possible to adopt r = 1/25
(or d = 6 cm). Due to nonlinear features in the system, we obtain a response
in which several frequencies appear along with a variation in the mean level.
The curves in figure C.6a summarize results concerning the well response at
the same frequency as the external sinusoidal wave.

Constituents with frequencies other than that of the input signal were
noted in the response, but they were of low amplitude. However, modifica-
tions in the mean level in the presence of swells were sometimes significant
(figure C.6b).

These calculations were done with a characteristic pipe roughness dimen-
sion of e = 1 mm. On condition that the roughness e is low at the given pipe
diameter d, the results obtained above were not markedly different. However,
concretions and fouling that build up in the pipe over time make it harder to
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Figure C.6b: Well of diameter D = 150 cm with a pipe of length l = 400 cm and
diameter d = 15 cm⇒ r = 10 %: effect of swells on the mean level in the well. For a
given swell amplitude, each curve represents the variation in the mean level (in cm) in
the well as a function of the external signal period.

accurately assess this parameter, which is generally not clearly defined when
the well is put into operation. In practice, it is generally more a problem of
pipe narrowing (due to silting or fouling) than an increase in roughness that
alters the well performance.

The previous results show that efficient attenuation of unwanted high
frequency signals (swell, waves harbour seiches) and efficient preservation of
low frequency signals (tide, storm waves, tsunamis) are the result of tradoffs
which should be sought for a given site, depending on the tidal amplitude,
swell exposure and the well installation possibilities.

Concerning the error associated with the hydraulic response of the well
to external signals, no general rules can be formulated, but a preliminary
digital simulation, in which the characteristics of the place are accounted for,
should help avoid unsuitable installations.
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Development

of the potential,

harmonic constituents

The computations are based on the general formulation of the potential:

U =
k mA

rA

 1√
1− 2aA cos u+ a

2
A

− 1− aA cos u


k = 6.670 10−11 SI units

mA = celestial body mass

rA = distance from the celestial body

aA =
aT

rA
, where aT is the Earth’s radius

Based on the notations used in Chapter III: cos u, i.e. the cosine of the
geocentric zenithal distance, is calculated with the following equations:

cos u = sin L sin d+ cos L cos d cos AH

sin d = sin e cos b sin l+ cos e sin b

cos d cos AH = cos b cos l cos a+ (cos e cos b sin l− sin e sin b) sin a
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where:

L = latitude of the observer

d = declination of the celestial body

e = inclination of the ecliptic

b = latitude of the ecliptic of the celestial body

l = longitude of the ecliptic of the celestial body

a = hour angle of vernal equinox

N = ecliptic longitude of the ascending lunar node

If t is the number of mean days since 1 January 2000 at 12 h UT, with angles
expressed in decimal degrees, then:

e = 23.439 29− 3.56 10−7t

a = 280.466 448 5+ 360.985 647 360 t

− 11.99 10−13t2
− 4.785 9 10−3 sin N cos e− G

N′ = −N = 234.955+ 1 934.136 3 t + 0.002 1 t2

1 • Lunar potential

For the lunar potential, the sin d, sin b and i values are obtained at any
time using Brown’s expansion, as given in the following tables. The sine and
cosine arguments are obtained by the method described in Chapter V using
Doodson numbers.

1.0.1 • Brown’s expansion

Ecliptic longitude l Ecliptic latitude b (r0/r) iL

arg. sin coeff .× 106 arg. sin coeff .× 106 arg. cos coeff .× 106

55 654 5 55 566 −4 55 555 106

55 753 1 55 665 −4 847 56 455 4

55 775 6 56 444 −25 56 554 −117

56 356 −12 56 466 4 57 355 −89

56 455 90 56 565 23 57 553 −3

56 554 −3 243 56 664 −27 57 575 −31

56 576 7 57 245 −1 58 354 −6

57 355 −1 026 57 465 −808 58 574 −2

57 553 −37 57 685 1 61 657 14

57 575 −267 58 464 −36 61 855 2
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1. Lunar potential

Ecliptic longitude l Ecliptic latitude b (r0/r) iL

58 354 −42 59 463 −1 62 656 422

58 574 −11 61 547 5 62 755 −3

59 353 −1 61 745 3 63 435 −14

60 658 1 62 546 144 63 457 6

61 635 1 62 645 −2 63 655 10 025

61 657 36 63 545 3 024 64 456 337

61 855 6 63 765 −8 64 555 −285

62 436 −2 64 346 1 64 654 −66

62 535 −1 64 445 −3 65 455 54 501

62 656 1 000 64 544 −59 65 554 44

62 755 −6 64 566 24 65 653 −6

63 435 −31 65 345 154 65 675 −209

63 457 13 65 565 89 504 66 355 5

63 556 −3 66 344 −2 66 454 −278

63 655 22 236 66 465 2 66 575 2

64 456 717 66 564 −31 67 255 −35

64 555 −605 67 365 −75 67 453 −3

64 654 −138 67 585 −11 67 475 −24

65 356 −2 68 364 −3 68 254 −1

65 455 109 760 70 646 3 70 756 9

65 554 87 71 645 32 71 557 27

65 653 −12 71 667 2 71 755 109

65 675 −192 72 446 9 72 556 561

66 355 9 72 545 −2 72 655 −11

66 454 −532 72 666 43 73 335 −1

66 575 3 73 445 162 73 555 8 249

67 255 −64 73 665 967 73 775 −4

67 453 −6 74 444 −4 74 356 37

68 254 −2 74 466 33 74 455 −32

70 558 2 74 565 −26 74 554 −88

70 756 13 74 664 −6 75 355 2 970

71 557 40 75 245 8 75 454 5

71 656 −1 75 465 4 897 75 575 −4

71 755 149 75 564 4 76 354 −30
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Ecliptic longitude l Ecliptic latitude b (r0/r) iL

72 556 802 75 685 −14 77 155 −4

72 655 −16 76 464 −26 77 375 −3

72 754 −2 77 265 −7 81 855 1

73 335 −2 77 485 −2 80 656 20

73 357 1 80 546 2 81 457 3

73 555 11 490 80 766 1 81 655 176

73 654 1 81 545 18 82 456 67

73 775 −3 81 567 2 82 654 −3

74 356 47 81 765 12 83 455 902

74 455 −41 82 566 39 83 675 −3

74 554 −119 82 665 −1 84 256 4

75 355 3 728 83 345 10 84 355 −3

75 454 6 83 565 568 84 454 −14

75 575 −1 996 84 366 4 85 255 182

76 354 −37 84 465 −3 86 254 −3

76 574 2 84 564 −6 91 755 3

77 155 −5 85 365 300 90 556 10

77 375 3 85 585 −31 91 555 76

81 657 2 86 364 −3 92 356 6

81 855 1 90 666 2 92 554 −1

80 656 21 91 445 2 93 355 83

81 457 4 91 665 15 94 354 −1

81 655 186 92 466 6 95 155 12

82 456 71 93 465 73 101 655 3

82 555 2 93 685 −1 100 456 2

82 654 −3 94 464 −1 101 455 13

82 676 −2 95 265 19 103 255 7

83 455 931 95 485 −5 111 355 1

83 675 −46 101 565 6

84 256 3 103 365 7

84 355 −3 105 165 1

84 454 −14 111 464 1

84 476 −1

84 575 1
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2. Solar potential

Ecliptic longitude l Ecliptic latitude b (r0/r) iL

85 255 175

85 475 −219

86 254 −3

91 755 3

90 556 9

91 555 67

92 356 6

92 554 −1

92 576 −2

93 355 70

93 575 −28

94 354 −1

95 155 9

95 375 −19

95 595 2

101 655 2

100 456 1

101 455 10

101 675 −1

103 255 5

103 475 −5

105 275 −2

111 355 1

2 • Solar potential

The development is much simpler for the Sun. Its latitude may be dis-
regarded and the longitude and parallax expansions contain many fewer
terms:

cos u = sin L sin d+ cos L cos d cos AH

sin d = sin e sin l

cos d cos AH = cos l cos a+ sin l sin a cos e

Based on the notations used in Chapter V, where h denotes the mean
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longitude of the Sun and p1 is the mean longitude of perihelion:

l = h+ 3.3501 · 10−3 sin
(
h− p1

)
+ 3.51 · 10−4 sin 2

(
h− p1

)
+ 5 · 10−6 sin 3

(
h− p1

)
+ . . .

i = 1+ 1.6750 · 10−2 cos
(
h− p1

)
+ 2.81 · 10−4 cos 2

(
h− p1

)
+ 5 · 10−6 cos 3

(
h− p1

)
+ . . .

h and p1 can be calculated at all times using the equations set down in
Chapter V.

3 • Harmonic analysis of the potential, species separation

Based on the previous equations, it is possible to calculate the tide-
generating potential at regular intervals and to perform a harmonic analysis.

However, as the potential is dependent on the latitude, it is convenient to
adopt Doodson’s presentation, where the latitude is involved in the geodesic
coefficients in the form of factors of variable terms, as presented in table 5.2.

For comparison with Doodson’s development, the potential was calcu-
lated at latitudes 0°, 26.5650°1, 45° and 90°.

By adopting the notations of table 5.2 and assuming Cn,m = Gn,m/CL, we
obtain:

L C2.0 C3.0 C2.1 C3.1 C2.2 C3.2 C3.3

0° 0.5 0 0.0 0.726 18 1 0 1

26.565 0° 0.2 1 0.8 0 0.8 0.929 5 0.715 5

45° 0.2 0.395 28 1.0 −0.770 23 0.5 0.918 56 0.353 55

90° −1 −2.236 06 0.0 0 0 0 0

When the different latitude values are taken into account, the contribu-
tions of the different terms of the potential expansion can be clearly sepa-
rated into Legendre polynomials.

By adopting the notations Un,m for the constituent of the potential of
species m derived from the Pn term of the Legendre polynomial develop-
ment (n = 2 or n = 3), and where U(L) is the potential calculated at lati-
tude L, the following table indicates the different combinations required to
calculate the terms of the potential.

1. sin2(26.5650°) = 0.2
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4. Nonlinear interactions

U2.0 2U(0)

U3.0
− [2U(0)+ U(90)]

2.236 06

U2.1 U(45)+ 1.060 6 U(0)

U3.1 1.37707 U(0)

U2.2 U(0)

U3.2
[2U(45)− U(0)]

1.837 12

U3.3 U(0)

Other combinations are possible and were used for verification purposes.
The different potential values were computed hourly over a period

spanning eight ascending lunar node rotation periods, or approximately
150 years beginning on 1 January 1950.

For the solar potential, as the P3 term of the Legendre polynomial devel-
opment is negligible, the results are obtained directly through the analysis of
U(0) and U(45).

4 • Nonlinear interactions

The constituents generated by nonlinear interactions were calculated via
harmonic analysis of series obtained from the following products:

U2
2.2 : quarter diurnal and long period constituents D22

U3
2.2 : sixth diurnal and semidiurnal constituents T23

U4
2.2 : eigth diurnal and quarter diurnal constituents Q24

U5
2.2 : tenth diurnal, sixth diurnal

and semidiurnal constituents C25

U6
2.2 : twelfth diurnal, eigth diurnal

and quarter diurnal constituents S26

U2
2.1 : semidiurnal and long period constituents D11

U2.1U2.2 : diurnal and terdiurnal constituents D12

U3
2.1 : diurnal and terdiurnal constituents T11

U2.1U2
2.2 : terdiurnal and fifth diurnal constituents T122
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U2.1U3
2.2 : seventh diurnal constituents Q123

Note that nonlinear interactions involving semidiurnal constituents are
given more weight than diurnal constituents. It may be necessary to compute
other combinations in regions were diurnal constituents prevail.

Combinations involving the P3 constituent of the potential are legitimately
disregarded.

5 • Harmonic developments

The results of the above-described calculations are presented in the follow-
ing tables.

The potential term coefficients (PL, PS and P3) are directly derived from
the potential equation and are comparable to those of Doodson.

The interaction constituent coefficients were calculated by arbitrarily
attributing the value of 1,000 to the highest coefficient listed in the same col-
umn. Only their relative importance in the same column should be consid-
ered. A comparison of coefficients of constituents of different origins, and
thus from different columns, would not make sense.

Constituents derived directly from the potential (PL and PS) are gener-
ally the most important, and the interaction constituents decrease with their
degree beyond second-order interactions. Second-order interactions (T11,
T23, T123) are mainly derived from friction terms in propagation equations.
Their origin differs from that of first-order interactions (D22, D11, D12),
which are mainly derived from advection terms. In principle, their rela-
tive importance cannot be determined, and neither can the relative impor-
tance of interactions involving diurnal and semidiurnal constituents, which
depend on the type of tide.
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5. Harmonic developments

5.1 • Long period
ARGUMENT

NAME deg/hour NUM ALPHA PL PS D22 D11
| | | | |

Mean level 0.00000000 055555 ZZZZZZ|Z 50458|Z 23411|Z 1000|Z 1000|
0.00220641 055565 ZZZZAZ|B 6553|- -----|B 18|Z 6|
0.00441283 055575 ZZZZBZ|Z 70|- -----|- -----|- -----|

| | | | |
Sa 0.04106864 056555 ZZAZZZ|- -----|- -----|- -----|- -----|

| | | | |
Ssa 0.08213728 057555 ZZBZZZ|- -----|Z 7245|Z 32|B 9|

0.08434369 057565 ZZBZAZ|B 186|- -----|Z 9|B 1|
| | | | |

Sta 0.12320396 058554 ZZCZZY|- -----|Z 423|Z 2|- -----|
| | | | |

0.46931466 063645 ZAXAYZ|B 112|- -----|B 1|- -----|
MSm 0.47152108 063655 ZAXAZZ|Z 1581|- -----|Z 12|Z 1|

0.47372749 063665 ZAXAAZ|B 100|- -----|- -----|- -----|
| | | | |

0.54216827 065445 ZAZYYZ|B 544|- -----|B 3|Z 1|
Mm 0.54437468 065455 ZAZYZZ|Z 8253|B 2|Z 91|Z 6|

0.54658110 065465 ZAZYAZ|B 538|- -----|B 3|Z 1|
0.55365836 065655 ZAZAZZ|B 444|- -----|Z 2|B 1|
0.55586477 065665 ZAZAAZ|B 182|- -----|Z 1|- -----|

| | | | |
0.62651196 067455 ZABYZZ|B 112|- -----|Z 2|B 1|

| | | | |
Msf 1.01589576 073555 ZBXZZZ|Z 1367|- -----|Z 268|Z 7|

| | | | |
1.08874937 075355 ZBZXZZ|Z 677|- -----|Z 11|Z 1|

Mf 1.09803304 075555 ZBZZZZ|Z 15640|- -----|Z 70|B 19|
1.10023945 075565 ZBZZAZ|Z 6487|- -----|Z 18|B 6|
1.10244587 075575 ZBZZBZ|Z 608|- -----|Z 1|- -----|

| | | | |
SN 1.56027044 083455 ZCXYZZ|Z 216|- -----|Z 52|Z 1|
MStm 1.56955412 083655 ZCXAZZ|Z 568|- -----|Z 3|B 1|

1.57176053 083665 ZCXAAZ|Z 234|- -----|Z 1|- -----|
| | | | |

Mfm 1.64240772 085455 ZCZYZZ|Z 2984|- -----|Z 17|B 5|
1.64461414 085465 ZCZYAZ|Z 1237|- -----|Z 5|B 2|
1.64682055 085475 ZCZYBZ|Z 116|- -----|- -----|- -----|

| | | | |
MSqm 2.11392880 093555 ZDXZZZ|Z 474|- -----|Z 3|B 1|

2.11613521 093565 ZDXZAZ|Z 198|- -----|Z 1|- -----|
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D. Development of the potential, harmonic constituents

5.2 • Diurnal
ARGUMENT

NAME deg/hour NUM ALPHA PL PS D12 T11 P3
| | | | | |

12.30991155 115855 AVZCZZ|Y 107|- -----|Y 5|Y 8|- -----|
| | | | | |

12.38055874 117645 AVBAYZ|Y 52|- -----|Y 1|Y 16|- -----|
12.38276515 117655 AVBAZZ|Y 275|- -----|Y 12|Y 44|- -----|
12.45561876 119455 AVDYZZ|Y 54|- -----|Y 2|Y 8|- -----|

| | | | | |
12.84964440 125655 AWZAZZ|- -----|- -----|- -----|A 2|Z 67|
12.85207982 125745 AWZBYZ|Y 180|- -----|Y 3|Y 19|- -----|

2Q1 12.85428623 125755 AWZBZZ|Y 952|- -----|Y 39|Y 53|- -----|
| | | | | |

12.92493342 127545 AWBZYZ|Y 217|- -----|Y 5|Y 43|- -----|
SIGMA1 12.92713984 127555 AWBZZZ|Y 1148|- -----|Y 43|Y 120|- -----|

| | | | | |
12.96820652 128554 AWCZZY|Y 78|- -----|Y 2|Y 7|- -----|

| | | | | |
13.39181267 135545 AXZZYZ|- -----|- -----|- -----|- -----|Z 89|
13.39401908 135555 AXZZZZ|- -----|A 3|- -----|- -----|Z 225|

q1 13.39645450 135645 AXZAYZ|Y 1360|- -----|Y 28|Y 82|- -----|
Q1 13.39866092 135655 AXZAZZ|Y 7206|- -----|Y 246|Y 265|- -----|

| | | | | |
13.43972759 136654 AXAAZY|Y 66|- -----|- -----|Y 5|- -----|

| | | | | |
13.46930811 137445 AXBYYZ|Y 258|- -----|Y 5|Y 16|- -----|

RH01 13.47151452 137455 AXBYZZ|Y 1368|- -----|Y 48|Y 50|- -----|
13.48079819 137655 AXBAZZ|A 79|- -----|A 66|A 57|- -----|

| | | | | |
13.51258120 138454 AXCYZY|Y 63|- -----|Y 2|Y 2|- -----|

| | | | | |
13.87018199 143755 AYXBZZ|A 113|- -----|Y 1|Y 11|- -----|

| | | | | |
13.90196892 144556 AYYZZA|A 130|- -----|Y 5|Y 11|- -----|

| | | | | |
13.93862277 145535 AYZZXZ|A 217|- -----|A 7|Y 9|- -----|

o1 13.94082919 145545 AYZZYZ|Y 7110|- -----|Y 101|Y 258|- -----|
01 13.94303560 145555 AYZZZZ|Y 37689|- -----|Y 1000|Y 881|- -----|

13.94767744 145655 AYZAZZ|- -----|- -----|- -----|Y 1|Z 104|
13.95231927 145755 AYZBZZ|A 243|- -----|A 12|A 27|B 3|

| | | | | |
13.98410228 146554 AYAZZY|Y 109|- -----|- -----|Y 15|Y 1|

| | | | | |
MP1 14.02517288 147555 AYBZZZ|A 492|- -----|A 341|A 231|- -----|

14.02737929 147565 AYBZAZ|Y 107|- -----|- -----|A 30|- -----|
| | | | | |

14.41235026 153645 AZXAYZ|A 63|- -----|Y 6|Y 13|- -----|
14.41455668 153655 AZXAZZ|A 278|- -----|Y 30|Y 73|- -----|

| | | | | |
14.48520387 155445 AZZYYZ|A 197|- -----|Y 7|Y 27|- -----|
14.48741028 155455 AZZYZZ|A 1064|- -----|Y 33|Y 87|- -----|
14.48984571 155545 AZZZYZ|- -----|- -----|- -----|- -----|B 98|
14.49205212 155555 AZZZZZ|B 1|- -----|- -----|- -----|Z 661|
14.49448754 155645 AZZAYZ|Y 86|- -----|Y 7|A 23|- -----|

M1 14.49669396 155655 AZZAZZ|A 2961|- -----|A 100|A 180|- -----|
KHI1 14.49890037 155665 AZZAAZ|A 595|- -----|A 18|A 54|B 1|

| | | | | |
14.56954756 157455 AZBYZZ|A 567|- -----|A 12|A 44|- -----|
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5. Harmonic developments

14.57175397 157465 AZBYAZ|A 125|- -----|A 4|A 13|- -----|
| | | | | |

PI1 14.91786468 162556 AAWZZA|Y 1|Y 984|Y 30|Y 32|- -----|
14.95672495 163545 AAXZYZ|A 198|- -----|Y 60|Y 58|- -----|

P1 14.95893136 163555 AAXZZZ|Y 30|Y 16817|Y 466|Y 465|- -----|
| | | | | |

S1 15.00000000 164555 AAYZZZ|- -----|- -----|- -----|- -----|- -----|
| | | | | |

15.03886223 165545 AAZZYZ|Y 1049|- -----|Y 42|A 108|- -----|
K1 15.04106864 165555 AAZZZZ|A 36232|A 16124|A 742|A 1000|- -----|
k1 15.04327505 165565 AAZZAZ|A 7186|A 1|A 100|A 260|- -----|

15.04548147 165575 AAZZBZ|Y 154|- -----|Y 7|A 8|- -----|
| | | | | |

PSI1 15.08213532 166554 AAAZZY|Y 6|A 409|A 6|A 20|- -----|
| | | | | |

PHI1 15.12320592 167555 AABZZZ|- -----|A 714|A 41|Y 118|- -----|
| | | | | |

THETA1 15.51258972 173655 ABXAZZ|A 566|- -----|A 12|A 44|- -----|
15.51479613 173665 ABXAAZ|A 112|- -----|A 3|A 15|- -----|

| | | | | |
15.58323691 175445 ABZYYZ|Y 86|- -----|Y 7|A 23|- -----|

J1 15.58544332 175455 ABZYZZ|A 2959|- -----|A 100|A 182|- -----|
15.58764974 175465 ABZYAZ|A 587|- -----|A 17|A 56|- -----|
15.59008516 175555 ABZZZZ|- -----|- -----|- -----|- -----|Z 247|

| | | | | |
SO1 16.05696440 183555 ACXZZZ|A 489|- -----|A 341|A 224|- -----|

16.05917081 183565 ACXZAZ|A 96|- -----|A 64|A 70|- -----|
| | | | | |

16.12981801 185355 ACZXZZ|A 241|- -----|A 12|A 26|- -----|
OO1 16.13910168 185555 ACZZZZ|A 1615|- -----|A 87|Y 256|- -----|
oo1 16.14130809 185565 ACZZAZ|A 1034|- -----|A 42|Y 108|- -----|

16.14351451 185575 ACZZBZ|A 217|- -----|A 7|Y 9|- -----|
| | | | | |

16.60133908 193455 ADXYZZ|A 77|- -----|A 65|A 55|- -----|
16.61062276 193655 ADXAZZ|A 58|- -----|A 4|Y 16|- -----|

| | | | | |
KQ1 16.68347636 195455 ADZYZZ|A 308|- -----|A 22|Y 77|- -----|

5.3 • Semidiurnal
ARGUMENT

NAME deg/hour NUM ALPHA PL PS D11 T23 C25
| | | | | |

2MN2S2 26.40793803 209655 BUDAZZ|Z 18|- -----|- -----|Z 9|Z 63|
| | | | | |

3M(SK)2 26.87017544 217555 BVBZZZ|- -----|- -----|B 25|Z 7|Z 57|
2NS2 26.87945911 217755 BVBBZZ|Z 110|- -----|Z 1|Z 30|Z 73|

| | | | | |
3M2S2 26.95231272 219555 BVDZZZ|Z 68|- -----|- -----|Z 24|Z 122|
2NK2S2 26.96159639 219755 BVDBZZ|- -----|- -----|- -----|- -----|Z 4|

| | | | | |
27.33949010 225645 BWZAYZ|- -----|- -----|B 49|Z 9|Z 18|

OQ2 27.34169652 225655 BWZAZZ|- -----|- -----|B 132|Z 36|Z 83|
27.35098019 225855 BWZCZZ|Z 258|- -----|Z 5|Z 9|Z 19|
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D. Development of the potential, harmonic constituents

Semidiurnal (cont’d)
ARGUMENT

NAME deg/hour NUM ALPHA PL PS D11 T23 C25
| | | | | |

27.42162738 227645 BWBAYZ|B 25|- -----|Z 2|B 9|B 23|
MNS2 27.42383379 227655 BWBAZZ|Z 667|- -----|Z 13|Z 132|Z 253|

| | | | | |
27.46490047 228654 BWCAZY|Z 51|- -----|- -----|Z 9|Z 19|

| | | | | |
MNK2S2 27.50597107 229655 BWDAZZ|- -----|- -----|- -----|- -----|Z 15|
MNUS2 27.49668740 229455 BWDYZZ|Z 129|- -----|Z 2|Z 25|Z 46|

| | | | | |
2MS2K2 27.80393392 233555 BXXZZZ|- -----|- -----|- -----|Z 2|Z 11|

| | | | | |
27.88386479 235545 BXZZYZ|- -----|- -----|B 129|Z 19|Z 34|

2MK2 27.88607120 235555 BXZZZZ|- -----|- -----|B 348|Z 85|Z 162|
27.89314846 235745 BXZBYZ|B 86|B 1|Z 7|B 4|B 8|

2N2 27.89535487 235755 BXZBZZ|Z 2300|- -----|Z 40|Z 57|Z 101|
| | | | | |

27.96600206 237545 BXBZYZ|B 103|- -----|Z 7|B 25|B 47|
MU2 2MS2 27.96820848 237555 BXBZZZ|Z 2777|- -----|Z 43|Z 351|Z 529|

| | | | | |
28.00927515 238554 BXCZZY|Z 188|- -----|Z 2|Z 23|Z 41|

| | | | | |
SNK2 28.35759228 243655 BYXAZZ|- -----|- -----|B 56|Z 19|Z 61|

28.36687595 243855 BYXCZZ|B 56|- -----|- -----|Z 2|Z 9|
| | | | | |

28.39866288 244656 BYYAZA|B 147|- -----|Z 1|Z 1|Z 7|
| | | | | |

28.42603306 245435 BYZYXZ|B 67|Y 1|- -----|B 1|B 2|
28.43288131 245545 BYZZYZ|Y 3|- -----|- -----|- -----|- -----|
28.43508772 245555 BYZZZZ|- -----|- -----|- -----|- -----|- -----|

n2 28.43752314 245645 BYZAYZ|B 648|- -----|Z 40|B 18|B 30|
N2 28.43972956 245655 BYZAZZ|Z 17391|- -----|Z 246|Z 298|Z 403|

| | | | | |
28.47615636 246555 BYAZZZ|B 94|- -----|- -----|B 2|B 3|
28.48079623 246654 BYAAZY|Z 163|- -----|Z 3|Z 5|Z 14|

| | | | | |
nu2 28.51037675 247445 BYBYYZ|B 123|- -----|Z 8|B 2|B 10|
NU2 28.51258316 247455 BYBYZZ|Z 3302|- -----|Z 48|Z 45|Z 119|

28.52186683 247655 BYBAZZ|Z 14|- -----|- -----|Z 20|Z 61|
| | | | | |

28.55364984 248454 BYCYZY|Z 152|- -----|Z 2|Z 3|Z 8|
| | | | | |

2KN2S2 28.60400411 249655 BYDAZZ|- -----|- -----|- -----|- -----|Z 1|
| | | | | |

28.89976055 253545 BZXZYZ|- -----|- -----|B 56|Z 20|Z 38|
MSK2 28.90196696 253555 BZXZZZ|- -----|- -----|B 317|Z 76|Z 159|
gamma2 28.91125063 253755 BZXBZZ|B 272|- -----|Z 1|Z 16|Z 54|

| | | | | |
M(SK)2 28.94303756 254556 BZYZZA|B 313|- -----|- -----|Z 12|Z 27|

| | | | | |
m2 28.98189783 255545 BZZZYZ|B 3383|- -----|Z 163|B 56|B 70|
M2 28.98410424 255555 BZZZZZ|Z 90812|- -----|Z 1000|Z 1000|Z 1000|

28.98631065 255565 BZZZAZ|B 5|- -----|Z 131|B 19|B 34|
28.98874608 255655 BZZAZZ|- -----|- -----|- -----|- -----|Z 1|

| | | | | |
M(KS)2 29.02517092 256554 BZAZZY|Z 277|- -----|Z 11|Z 18|Z 34|
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5. Harmonic developments

Semidiurnal (cont’d)
ARGUMENT

NAME deg/hour NUM ALPHA PL PS D11 T23 C25
| | | | | |

MKS2 29.06624152 257555 BZBZZZ|Z 104|- -----|Z 1|Z 82|Z 167|
29.06844793 257565 BZBZAZ|B 51|- -----|Z 1|Z 23|Z 44|

| | | | | |
2SM2K2 29.14837880 259555 BZDZZZ|- -----|- -----|- -----|- -----|Z 5|

| | | | | |
LAMBDA2 29.45562532 263655 BAXAZZ|B 669|- -----|Z 30|Z 121|Z 254|

| | | | | |
2SN(MK)2 29.37348804 261655 BAVAZZ|- -----|- -----|Z 2|Z 1|Z 18|

| | | | | |
29.52627251 265445 BAZYYZ|Z 94|- -----|Z 4|B 7|B 17|

L2 2MN2 29.52847892 265455 BAZYZZ|B 2567|- -----|Z 34|Z 108|Z 233|
29.53312076 265555 BAZZZZ|- -----|- -----|- -----|- -----|- -----|

NKM2 29.53776260 265655 BAZAZZ|Z 642|- -----|B 69|Z 39|Z 86|
29.53996901 265665 BAZAAZ|Z 283|- -----|B 22|Z 12|Z 23|

| | | | | |
29.61061620 267455 BABYZZ|Z 122|- -----|B 14|Z 10|Z 43|

| | | | | |
2SK2 29.91786272 271555 BBVZZZ|- -----|- -----|B 74|Z 16|Z 63|

| | | | | |
T2 29.95893332 272556 BBWZZA|Z 3|Z 2472|Z 29|Z 45|Z 60|

| | | | | |
29.99779359 273545 BBXZYZ|Z 94|- -----|B 12|B 20|B 39|

S2 30.00000000 273555 BBXZZZ|Z 73|Z 42286|Z 454|Z 710|Z 816|
30.00220641 273565 BBXZAZ|- -----|- -----|Z 62|B 20|B 39|

| | | | | |
R2 30.04106668 274554 BBYZZY|- -----|B 437|- -----|- -----|- -----|

| | | | | |
30.07993087 275545 BBZZYZ|B 147|- -----|Z 33|B 8|B 17|

K2 30.08213728 275555 BBZZZZ|Z 7852|Z 3643|B 637|Z 207|Z 279|
k2 30.08434369 275565 BBZZAZ|Z 3423|Z 1|B 166|Z 56|Z 70|

30.08655011 275575 BBZZBZ|Z 371|- -----|B 5|Z 5|Z 5|
| | | | | |

30.12320396 276554 BBAZZY|B 1|Z 91|B 11|Z 3|Z 9|
| | | | | |

30.16427456 277555 BBBZZZ|- -----|Z 76|B 19|Z 7|Z 22|
| | | | | |

MSnu2 30.47152108 281655 BCVAZZ|- -----|- -----|Z 5|Z 18|Z 79|
| | | | | |

MSN2 30.54437468 283455 BCXYZZ|Z 9|- -----|Z 26|Z 104|Z 225|
XI2 30.55365836 283655 BCXAZZ|Z 122|- -----|B 14|Z 10|Z 43|

| | | | | |
KJ2 30.62651196 285455 BCZYZZ|Z 640|- -----|B 70|Z 39|Z 85|

30.62871838 285465 BCZYAZ|Z 279|- -----|B 26|Z 12|Z 22|
| | | | | |

2KM(SN)2 30.70864924 287455 BCBYZZ|B 1|- -----|B 2|Z 1|Z 6|
| | | | | |

30.97482712 290555 BDUZZZ|Y 2|- -----|- -----|- -----|- -----|
| | | | | |

2SM2 31.01589576 291555 BDVZZZ|Z 1|- -----|Z 4|Z 154|Z 304|
| | | | | |

31.05696440 292555 BDWZZZ|- -----|- -----|- -----|A 8|A 16|
| | | | | |

31.08874937 293355 BDXXZZ|- -----|- -----|Z 2|Z 12|Z 42|
31.10023945 293565 BDXZAZ|Z 45|- -----|Z 4|Z 22|Z 41|
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D. Development of the potential, harmonic constituents

Semidiurnal (cont’d)
ARGUMENT

NAME deg/hour NUM ALPHA PL PS D11 T23 C25
| | | | | |

SKM2 31.09803304 293555 BDXZZZ|Z 105|- -----|- -----|Z 82|Z 169|
| | | | | |

31.18017032 295555 BDZZZZ|Z 165|- -----|B 41|Z 14|Z 30|
31.18237673 295565 BDZZAZ|Z 144|- -----|B 31|Z 8|Z 17|
31.18458315 295575 BDZZBZ|Z 47|- -----|B 9|Z 2|Z 4|

| | | | | |
2SNU2 31.48741684 2X*655 BETAZZ|Y 1|- -----|- -----|Z 6|Z 18|

| | | | | |
2SN2 31.56027045 2X1455 BEVYZZ|- -----|- -----|Z 1|Z 30|Z 98|

| | | | | |
SKN2 31.64240772 2X3455 BEXYZZ|Z 16|- -----|- -----|Z 20|Z 61|

| | | | | |
3S2M2 32.03179152 2E*555 BFTZZZ|- -----|- -----|- -----|Z 4|Z 49|

| | | | | |
3SK2M2 32.11392880 2E1555 BFVZZZ|- -----|- -----|- -----|Z 3|Z 38|

5.4 • Terdiurnal
ARGUMENT

NAME deg/hour NUM ALPHA PL D12 T11 P3
| | | | |

41.29401579 315855 CVZCZZ|- -----|Y 21|Y 17|- -----|
| | | | |

41.36686939 317655 CVBAZZ|- -----|Y 37|Y 27|- -----|
| | | | |

41.83618406 325745 CWZBYZ|- -----|Y 7|Y 30|- -----|
41.83839047 325755 CWZBZZ|- -----|Y 110|Y 84|- -----|

| | | | |
41.91124408 327555 CWBZZZ|- -----|Y 91|Y 65|- -----|

| | | | |
42.38055874 335645 CXZAYZ|- -----|Y 31|Y 110|- -----|

MQ3 42.38276515 335655 CXZAZZ|- -----|Y 431|Y 326|- -----|
| | | | |

42.45561876 337455 CXBYZZ|Z 1|Y 83|Y 63|- -----|
| | | | |

42.85428623 343755 CYXBZZ|- -----|Y 31|Y 23|- -----|
42.84500256 343555 CYXZZZ|- -----|Y 40|A 227|- -----|

| | | | |
42.92493342 345545 CYZZYZ|- -----|Y 68|Y 253|- -----|

2MK3 42.92713984 345555 CYZZZZ|- -----|Y 1000|Y 753|- -----|
42.93178167 345655 CYZAZZ|Z 329|- -----|Y 1|Z 158|

2NKM3 42.93642351 345755 CYZBZZ|- -----|A 45|A 59|- -----|
| | | | |

2MS3 42.96820848 346555 CYAZZZ|B 2|- -----|- -----|B 1|
| | | | |

2MP3 43.00927712 347555 CYBZZZ|Z 1|A 353|A 47|- -----|
| | | | |

43.39866092 353655 CZXAZZ|- -----|Y 221|Y 162|- -----|
| | | | |

m3 43.47394994 355545 CZZZYZ|B 66|Y 1|- -----|B 32|
M3 43.47615636 355555 CZZZZZ|Z 1188|Y 1|B 1|Z 569|
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5. Harmonic developments

Terdiurnal (cont’d)
ARGUMENT

NAME deg/hour NUM ALPHA PL D12 T11 P3
| | | | |

NK3 43.48079819 355655 CZZAZZ|- -----|A 226|A 300|- -----|
| | | | |

43.55365180 357455 CZBYZZ|- -----|A 29|A 60|- -----|
| | | | |

43.90196892 362556 CAWZZA|- -----|Y 56|Y 40|- -----|
| | | | |

SO3 43.94303560 363555 CAXZZZ|- -----|Y 905|Y 662|- -----|
| | | | |

MS3 43.98410424 364555 CAYZZZ|- -----|B 11|- -----|- -----|
| | | | |

44.02296646 365545 CAZZYZ|X 1|Y 85|A 134|- -----|
MK3 44.02517288 365555 CAZZZZ|- -----|A 762|A 1000|- -----|

44.02737929 365565 CAZZAZ|- -----|A 66|A 257|- -----|
| | | | |

44.06623956 366554 CAAZZY|- -----|A 15|A 19|- -----|
| | | | |

44.10731016 367555 CABZZZ|- -----|A 84|A 14|- -----|
| | | | |

44.48741028 373455 CBXYZZ|- -----|Y 28|Y 22|- -----|
44.49669396 373655 CBXAZZ|- -----|A 106|A 64|- -----|

| | | | |
2MQ3 44.56954756 375455 CBZYZZ|- -----|A 85|A 95|- -----|

44.57418940 375555 CBZZZZ|Z 144|- -----|- -----|Z 69|
44.57883123 375655 CBZAZZ|- -----|A 36|Y 58|- -----|
44.58103765 375665 CBZAAZ|Z 1|A 18|Y 24|- -----|

| | | | |
SP3 44.95893136 381555 CCVZZZ|- -----|Y 215|Y 152|- -----|

| | | | |
S3 45.00000000 382555 CCWZZZ|- -----|- -----|- -----|- -----|

| | | | |
SK3 45.04106864 383555 CCXZZZ|- -----|A 609|A 437|- -----|

45.04327505 383565 CCXZAZ|- -----|A 91|A 115|- -----|
| | | | |

K3 45.12320592 385555 CCZZZZ|- -----|A 192|Y 369|- -----|
45.12541233 385565 CCZZAZ|- -----|A 85|Y 138|- -----|

| | | | |
45.58544332 393455 CDXYZZ|- -----|A 92|A 49|- -----|

| | | | |
45.66758060 395455 CDZYZZ|Y 1|A 37|Y 60|- -----|
45.66978701 395465 CDZYAZ|- -----|A 19|Y 31|- -----|

| | | | |
2SO3 46.05696440 3X1555 CEVZZZ|- -----|A 159|A 5|- -----|

5.5 • Quarter diurnal
ARGUMENT

NAME deg/hour NUM ALPHA D22 Q24 S26
| | | |

55.86356335 417755 DVBBZZ|Z 7|Z 58|Z 112|
| | | |

4M2S4 55.93641695 419555 DVDZZZ|Z 3|Z 37|Z 120|
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D. Development of the potential, harmonic constituents

Quarter diurnal (cont’d)
ARGUMENT

NAME deg/hour NUM ALPHA D22 Q24 S26
| | | |

56.32580075 425655 DWZAZZ|- -----|Z 46|Z 99|
56.33508443 425855 DWZCZZ|Z 15|Z 26|Z 44|

| | | |
2MNS4 56.40793803 427655 DWBAZZ|Z 27|Z 183|Z 306|

| | | |
2MnuS4 56.48079164 429455 DWDYZZ|Z 5|Z 33|Z 55|

| | | |
3MK4 56.87017544 435555 DXZZZZ|- -----|Z 75|Z 149|
N4 56.87945911 435755 DXZBZZ|Z 86|Z 128|Z 180|

| | | |
3MS4 56.95231272 437555 DXBZZZ|Z 74|Z 340|Z 488|

| | | |
mn4 57.42162738 445645 DYZAYZ|B 28|B 41|B 55|
MN4 57.42383379 445655 DYZAZZ|Z 381|Z 465|Z 548|

| | | |
Mnu4 57.49668740 447455 DYBYZZ|Z 71|Z 73|Z 130|

| | | |
2MSK4 57.88607120 453555 DZXZZZ|- -----|Z 96|Z 179|

57.89535487 453755 DZXBZZ|Z 14|Z 66|Z 125|
| | | |

MA4 57.92713984 454555 DZYZZZ|- -----|- -----|- -----|
| | | |

m4 57.96600206 455545 DZZZYZ|B 73|B 87|B 97|
M4 57.96820848 455555 DZZZZZ|Z 1000|Z 1000|Z 990|

| | | |
2MRS4 58.00927515 456554 DZAZZY|Z 8|Z 27|Z 42|

| | | |
2MKS4 58.05034576 457555 DZBZZZ|Z 11|Z 114|Z 201|

| | | |
SN4 58.43972956 463655 DAXAZZ|Z 161|Z 326|Z 451

| | | |
ML4 58.51258316 465455 DAZYZZ|B 22|Z 111|Z 231|
NK4 58.52186683 465655 DAZAZZ|Z 61|Z 110|Z 169|
nk4 58.52407325 465665 DAZAAZ|Z 20|Z 33|Z 46|

| | | |
MT4 58.94303756 472556 DBWZZA|Z 50|Z 64|Z 76|

| | | |
ms4 58.98189783 473545 DBXZYZ|B 32|B 58|B 74|
MS4 58.98410424 473555 DBXZZZ|Z 915|Z 995|Z 1000|

| | | |
mK4 59.06403510 475545 DBZZYZ|B 12|B 23|B 34|
MK4 59.06624152 475555 DBZZZZ|Z 249|Z 314|Z 374|
Mk4 59.06844793 475565 DBZZAZ|Z 74|Z 87|Z 96|

| | | |
2SNM4 59.45562532 481655 DCVAZZ|B 7|Z 82|Z 189|

| | | |
2MSN4 59.52847892 483455 DCXYZZ|B 26|Z 118|Z 249|

| | | |
2MKN4 59.61061620 485455 DCZYZZ|Z 8|Z 52|Z 107|

| | | |
ST4 59.95893332 490556 DDUZZA|Z 25|Z 49|Z 67|

| | | |
S4 60.00000000 491555 DDVZZZ|Z 211|Z 403|Z 524|

| | | |
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5. Harmonic developments

Quarter diurnal (cont’d)

ARGUMENT
NAME deg/hour NUM ALPHA D22 Q24 S26

| | | |
SK4 60.08213728 493555 DDXZZZ|Z 117|Z 224|Z 306|

60.08434369 493565 DDXZAZ|Z 35|Z 61|Z 76|
| | | |

60.16427456 495555 DDZZZZ|Z 20|Z 38|Z 59|
60.16648097 495565 DDZZAZ|Z 13|Z 23|Z 34|

5.6 • Fifth diurnal
ARGUMENT

NAME deg/hour NUM ALPHA T122
| |

70.27812003 515855 EVZCZZ|Y 32|
| |

70.35097363 517655 EVBAZZ|Y 47|
| |

70.82028830 525745 EWZBYZ|Y 15|
70.82249471 525755 EWZBZZ|Y 137|

| |
70.89534831 527555 EWBZZZ|Y 96|

| |
71.36466298 535645 EXZAYZ|Y 49|

2MQ5 71.36686939 535655 EXZAZZ|Y 431|
| |

71.43972300 537455 EXBYZZ|Y 78|
| |

71.83839047 543755 EYXBZZ|Y 75|
| |

71.90903766 545545 EYZZYZ|Y 84|
4MK5 71.91124408 545555 EYZZZZ|Y 766|

71.92052775 545755 EYZBZZ|A 94|
| |

71.95231075 546554 EYAZZY|Y 11|
| |

4MP5 71.99338135 547555 EYBZZZ|A 77|
| |

72.38276515 553655 EZXAZZ|Y 368|
| |

72.46490243 555655 EZZAZZ|A 365|
| |

72.88607316 562556 EAWZZA|Y 52|
| |

2MP5 72.92713984 563555 EAXZZZ|Y 1000|
| |

73.00707070 565545 EAZZYZ|Y 123|
2MK5 73.00927712 565555 EAZZZZ|A 846|

73.01148353 565565 EAZZAZ|A 85|
| |

73.05034379 566554 EAAZZY|A 13|
| |

73.09141439 567555 EABZZZ|A 29|
| |
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D. Development of the potential, harmonic constituents

Fifth diurnal (cont’d)
ARGUMENT

NAME deg/hour NUM ALPHA T122
| |

73.39866092 571655 EBVAZZ|Y 75|
| |

73.47151452 573455 EBXYZZ|A 39|
73.48079819 573655 EBXAZZ|A 188|

| |
73.55365180 575455 EBZYZZ|A 38|
73.56293547 575655 EBZAZZ|A 85|
73.56514189 575665 EBZAAZ|A 41|

| |
73.94303560 581555 ECVZZZ|Y 464|

| |
2SK5 74.02517288 583555 ECXZZZ|A 773|

74.02737929 583565 ECXZAZ|A 78|
| |

74.10731016 585555 ECZZZZ|A 284|
74.10951657 585565 ECZZAZ|A 122|

| |
74.56954756 593455 EDXYZZ|A 25|

| |
74.65168484 595455 EDZYZZ|A 27|
74.65389125 595465 EDZYAZ|A 12|

| |
74.95893136 5X*555 EETZZZ|Y 72|

| |
75.04106864 5X1555 EEVZZZ|A 181|

| |
75.12320592 5X3555 EEXZZZ|A 143|

5.7 • Sixth diurnal
ARGUMENT

NAME deg/hour NUM ALPHA T23 C25
| | |

2(MN)K6 84.76553031 615755 FVZBZZ|- -----|Z 18|
| | |

5MKS6 84.83838391 617555 FVBZZZ|- -----|Z 11|
2(MN)S6 84.84766759 617755 FVBBZZ|Z 16|Z 75|

| | |
84.92052119 619555 FVDZZZ|Z 7|Z 42|

| | |
85.30990499 625655 FWZAZZ|- -----|Z 43|
85.31918867 625855 FWZCZZ|Z 32|Z 48|

| | |
3MNS6 85.39204227 627655 FWBAZZ|Z 48|Z 189|
3NKS6 85.40132594 627855 FWBCZZ|- -----|Z 6|

| | |
3MnuS6 85.46489588 629455 FWDYZZ|Z 9|Z 34|

| | |
4MK6 85.85427968 635555 FXZZZZ|- -----|Z 57|
2NM6 85.86356335 635755 FXZBZZ|Z 138|Z 183|

| | |

356



5. Harmonic developments

Sixth diurnal (cont’d)
ARGUMENT

NAME deg/hour NUM ALPHA T23 C25
| | |

4mS6 85.93421054 637545 FXBZYZ|B 11|B 38|
4MS6 85.93641695 637555 FXBZZZ|Z 97|Z 278|

| | |
85.97748363 638554 FXCZZY|Z 7|Z 21|

| | |
2MSNK6 86.32580075 643655 FYXAZZ|- -----|Z 53|

| | |
2mn6 86.40573162 645645 FYZAYZ|B 47|B 61|
2MN6 86.40793803 645655 FYZAZZ|Z 432|Z 510|

| | |
2Mnu6 86.48079164 647455 FYBYZZ|Z 78|Z 82|
2MNKS6 86.49007531 647655 FYBAZZ|Z 10|Z 68|

| | |
3mSk6 86.86796902 653545 FZXZYZ|- -----|Z 17|
3MSK6 86.87017544 653555 FZXZZZ|- -----|Z 88|

86.87945911 653755 FZXBZZ|Z 75|Z 140|
| | |

MA6 86.91124408 654555 FZYZZZ|- -----|- -----|
| | |

m6 86.95010630 655545 FZZZYZ|B 83|B 95|
M6 86.95231272 655555 FZZZZZ|Z 764|Z 812|

| | |
3MKS6 87.03444999 657555 FZBZZZ|Z 25|Z 119|
3MkS6 87.03665641 657565 FZBZAZ|Z 5|Z 33|

| | |
MTN6 87.38276712 662656 FAWAZA|Z 18|Z 29|

| | |
MSN6 87.42383379 663655 FAXAZZ|Z 368|Z 492|

| | |
87.49448099 665445 FAZYYZ|Z 1|B 11|

2ML6 87.49668740 665455 FAZYZZ|Z 11|Z 107|
MNK6 87.50597107 665655 FAZAZZ|Z 120|Z 173|

| | |
MKnu6 87.57882468 667455 FABYZZ|Z 23|Z 34|

| | |
2(MS)K6 87.88607120 671555 FBVZZZ|- -----|Z 57|

87.89535487 671755 FBVBZZ|Z 3|Z 42|
| | |

2MT6 87.92714180 672556 FBWZZA|Z 52|Z 65|
| | |

2mS6 87.96600206 673545 FBXZYZ|B 72|B 89|
2MS6 87.96820848 673555 FBXZZZ|Z 1000|Z 1000|

| | |
2MK6 88.05034576 675555 FBZZZZ|Z 277|Z 338|
2Mk6 88.05255217 675565 FBZZAZ|Z 83|Z 95|

| | |
88.13248303 677555 FBBZZZ|Z 4|Z 23|

| | |
2SN6 88.43972956 681655 FCVAZZ|Z 74|Z 204|

| | |
3MTN6 88.47151648 682456 FCWYZA|B 1|Z 8|

| | |
3MSN6 88.51258316 683455 FCXYZZ|B 39|Z 108|

88.52186683 683655 FCXAZZ|Z 62|Z 130|
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D. Development of the potential, harmonic constituents

Sixth diurnal (cont’d)

ARGUMENT
NAME deg/hour NUM ALPHA T23 C25

| | |
3MKN6 88.59472044 685455 FCZYZZ|Z 12|Z 57|

88.59692685 685465 FCZYAZ|Z 5|Z 17|
| | |

MST6 88.94303756 690556 FDUZZA|Z 52|Z 70|
| | |

2SM6 88.98410424 691555 FDVZZZ|Z 459|Z 585|
| | |

89.02517288 692555 FDWZZZ|A 21|A 28|
| | |

MSK6 89.06624152 693555 FDXZZZ|Z 252|Z 335|
MSk6 89.06844793 693565 FDXZAZ|Z 76|Z 92|

| | |
89.14837880 695555 FDZZZZ|Z 39|Z 59|
89.15058521 695565 FDZZAZ|Z 24|Z 35|

| | |
2MSTN6 89.48741224 6X0456 FEUYZA|B 2|Z 8|

| | |
2(MS)N6 89.52847892 6X1455 FEVYZZ|B 12|Z 72|

| | |
2MSKN6 89.61061620 6X3455 FEXYZZ|Z 8|Z 58|

5.8 • Seventh diurnal
ARGUMENT

NAME deg/hour NUM ALPHA Q123
| |

99.26222426 715855 GVZCZZ|Y 54|
| |

99.33507787 717655 GVBAZZ|Y 68|
| |

99.40793147 719455 GVDYZZ|Y 12|
| |

99.80439253 725745 GWZBYZ|Y 14|
99.80659895 725755 GWZBZZ|Y 185|

| |
99.87945255 727555 GWBZZZ|Y 113|

| |
99.92051923 728554 GWCZZY|Y 8|

| |
100.34876722 735645 GXZAYZ|Y 34|

3MQ7 100.35097363 735655 GXZAZZ|Y 456|
| |

100.39204031 736654 GXAAZY|Y 10|
| |

100.42382724 737455 GXBYZZ|Y 80|
| |

100.82249471 743755 GYXBZZ|Y 170|
| |

100.89314190 745545 GYZZYZ|Y 45|
5MK7 100.89534831 745555 GYZZZZ|Y 624|

100.90463199 745755 GYZBZZ|A 126|
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5. Harmonic developments

Seventh diurnal (cont’d)
ARGUMENT

NAME deg/hour NUM ALPHA Q123
| |

100.93641499 746554 GYAZZY|Y 14|
| |

100.97748559 747555 GYBZZZ|A 86|
| |

101.36686939 753655 GZXAZZ|Y 560|
| |

101.43972300 755455 GZZYZZ|Y 45|
101.44900667 755655 GZZAZZ|A 359|

| |
101.87017740 762556 GAWZZA|Y 51|

| |
101.91124408 763555 GAXZZZ|Y 1000|

| |
3MS7 101.95231272 764555 GAYZZZ|B 6|

| |
101.99117494 765545 GAZZYZ|Y 127|

3MK7 101.99338135 765555 GAZZZZ|A 591|
101.99558777 765565 GAZZAZ|A 45|

| |
102.03444803 766554 GAAZZY|A 13|

| |
102.07551863 767555 GABZZZ|A 41|

| |
102.38276515 771655 GBVAZZ|Y 241|

| |
102.45561876 773455 GBXYZZ|A 34|
102.46490243 773655 GBXAZZ|A 327|

| |
102.53775604 775455 GBZYZZ|A 50|
102.53996245 775465 GBZYAZ|A 6|
102.54703971 775655 GBZAZZ|A 143|

| |
102.92713984 781555 GCVZZZ|Y 683|

| |
3SK7 103.00927712 783555 GCXZZZ|A 764|

103.01148353 783565 GCXZAZ|A 58|
| |

103.09141439 785555 GCZZZZ|A 299|
103.09362081 785565 GCZZAZ|A 124|

| |
103.55365180 793455 GDXYZZ|A 18|

| |
103.63799549 795465 GDZYAZ|A 14|

| |
103.94303560 7X*555 GETZZZ|Y 211|

| |
104.02517288 7X1555 GEVZZZ|A 351|

| |
104.10731016 7X3555 GEXZZZ|A 272|
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D. Development of the potential, harmonic constituents

5.9 • Eighth diurnal
ARGUMENT

NAME deg/hour NUM ALPHA Q24 S26
| | |

113.83177183 817755 HVBBZZ|Z 27|Z 95|
| | |

2MNS8 114.37614651 827655 HWBAZZ|Z 69|Z 199|
| | |

5MK8 114.83838391 835555 HXZZZZ|- -----|Z 47|
| | |

114.91831478 837545 HXBZYZ|B 16|B 42|
| | |

2(MN)8 114.84766759 835755 HXZBZZ|Z 187|Z 245|
| | |

5MS8 114.92052119 837555 HXBZZZ|Z 114|Z 250|
| | |

3MSNK8 115.30990499 843655 HYXAZZ|- -----|Z 64|
| | |

115.38983586 845645 HYZAYZ|B 65|B 83|
3MN8 115.39204227 845655 HYZAZZ|Z 458|Z 553|

| | |
3Mnu8 115.46489588 847455 HYBYZZ|Z 79|Z 89|

| | |
115.85207326 853545 HZXZYZ|- -----|Z 13|

4MSK8 115.85427968 853555 HZXZZZ|- -----|Z 82|
115.86356335 853755 HZXBZZ|Z 170|Z 243|

| | |
115.93421054 855545 HZZZYZ|B 88|B 105|

M8 115.93641695 855555 HZZZZZ|Z 624|Z 708|
| | |

115.97748363 856554 HZAZZY|Z 14|Z 31|
| | |

4MKS8 116.01855423 857555 HZBZZZ|Z 42|Z 129|
116.02076065 857565 HZBZAZ|Z 11|Z 36|

| | |
2MSN8 116.40793803 863655 HAXAZZ|Z 560|Z 657|

| | |
3ML8 116.48079164 865455 HAZYZZ|Z 45|Z 117|
2MNK8 116.49007531 865655 HAZAZZ|Z 176|Z 242|

| | |
116.56292892 867455 HABYZZ|Z 33|Z 45|

| | |
3M2SK8 116.87017544 871555 HBVZZZ|- -----|Z 68|

116.87945911 871755 HBVBZZ|Z 43|Z 109|
| | |

3MT8 116.91124604 872556 HBWZZA|Z 51|Z 66|
| | |

116.95010630 873545 HBXZYZ|B 108|B 120|
3MS8 116.95231272 873555 HBXZZZ|Z 1000|Z 1000|

| | |
117.03224358 875545 HBZZYZ|B 35|B 49|

3MK8 117.03444999 875555 HBZZZZ|Z 290|Z 363|
117.03665641 875565 HBZZAZ|Z 86|Z 103|

| | |
117.11658727 877555 HBBZZZ|Z 8|Z 31|

| | |
2SMN8 117.42383379 881655 HCVAZZ|Z 240|Z 382|

| | |
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5. Harmonic developments

Eighth diurnal (cont’d)
ARGUMENT

NAME deg/hour NUM ALPHA Q24 S26
| | |

117.49668740 883455 HCXYZZ|B 34|Z 110|
117.50597107 883655 HCXAZZ|Z 160|Z 241|

| | |
4MSN8 117.57882468 885455 HCZYZZ|Z 23|Z 69|

| | |
2MST8 117.92714180 890556 HDUZZA|Z 40|Z 44|

| | |
2(MS)8 117.96820848 891555 HDVZZZ|Z 677|Z 749|

| | |
2MSK8 118.05034576 893555 HDXZZZ|Z 373|Z 442|

118.05255217 893565 HDXZAZ|Z 113|Z 124|
| | |

118.13248303 895555 HDZZZZ|Z 58|Z 82|
| | |

3SN8 118.43972956 8X*655 HETAZZ|Z 30|Z 112|
| | |

118.51258316 8X1455 HEVYZZ|B 30|Z 80|
118.52186683 8X1655 HEVAZZ|Z 41|Z 107|

| | |
3M2SN8 118.59472044 8X3455 HEXYZZ|Z 8|Z 72|

| | |
118.98189783 8E*545 HFTZYZ|B 6|B 18|

3SM8 118.98410424 8E*555 HFTZZZ|Z 203|Z 303|
| | |

2SMK8 119.06624152 8E1555 HFVZZZ|Z 170|Z 256|
119.06844793 8E1565 HFVZAZ|Z 51|Z 70|

5.10 • Tenth diurnal
ARGUMENT

NAME deg/hour NUM ALPHA C25
| |

142.81587606 X17755 JVBBZZ|Z 42|
| |

5MNS10 143.36025075 X27655 JWBAZZ|Z 91|
| |

143.82956541 X35745 JXZBYZ|B 43|
3M2N10 143.83177183 X35755 JXZBZZ|Z 243|
6MS10 143.90462543 X37555 JXBZZZ|Z 129|

| |
4MN10 144.37614651 X45655 JYZAZZ|Z 492|

| |
4Mnu10 144.44900011 X47455 JYBYZZ|Z 83|

| |
5MSK10 144.83838391 X53555 JZXZZZ|B 4|

| |
144.91831478 X55545 JZZZYZ|B 97|

M10 144.92052119 X55555 JZZZZZ|Z 557|
| |

144.96158787 X56554 JZAZZY|Z 17|
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D. Development of the potential, harmonic constituents

Tenth diurnal (cont’d)
ARGUMENT

NAME deg/hour NUM ALPHA C25
| |

145.00265847 X57555 JZBZZZ|Z 61|
145.00486488 X57565 JZBZAZ|Z 16|

| |
3MSN10 145.39204227 X63655 JAXAZZ|Z 746|

| |
4ML10 145.46489588 X65455 JAZYZZ|Z 79|
3MNK10 145.47417955 X65655 JAZAZZ|Z 238|

| |
145.54703315 X67455 JABYZZ|Z 45|

| |
145.86356335 X71755 JBVBZZ|Z 137|

| |
145.93421054 X73545 JBXZYZ|B 143|

4MS10 145.93641695 X73555 JBXZZZ|Z 1000|
| |

146.01634782 X75545 JBZZYZ|B 47|
4MK10 146.01855423 X75555 JBZZZZ|Z 311|

| |
146.10069151 X77555 JBBZZZ|Z 14|

| |
2(MS)N10 146.40793803 X81655 JCVAZZ|Z 476|

| |
146.48079164 X83455 JCXYZZ|B 17|
146.49007531 X83655 JCXAZZ|Z 297|

| |
5MSN10 146.56292892 X85455 JCZYZZ|Z 42|

| |
3M2S10 146.95231272 X91555 JDVZZZ|Z 870|

| |
3MSK10 147.03444999 X93555 JDXZZZ|Z 487|

147.03665641 X93565 JDXZAZ|Z 147|
| |

147.11658727 X95555 JDZZZZ|Z 78|
| |

3SMN10 147.42383379 XX*655 JETAZZ|Z 133|
| |

147.49668740 XX1455 JEVYZZ|B 43|
147.50597107 XX1655 JEVAZZ|Z 138|

| |
4M2SN10 147.57882468 XX3455 JEXYZZ|Z 13|

| |
147.96600206 XE*545 JFTZYZ|B 26|

3S2M10 147.96820848 XE*555 JFTZZZ|Z 388|
| |

2(MS)K10 148.05034576 XE1555 JFVZZZ|Z 322|
148.05255217 XE1565 JFVZAZ|Z 97|
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5. Harmonic developments

5.11 • Twelfth diurnal
ARGUMENT

NAME deg/hour NUM ALPHA S26
| |

171.79998030 T17755 LVBBZZ|Z 63|
| |

171.87283391 T19555 LVDZZZ|Z 21|
| |

172.27150138 T25855 LWZCZZ|Z 121|
| |

4MNS12 172.34435499 T27655 LWBAZZ|Z 118|
| |

172.41720859 T29455 LWDYZZ|Z 18|
| |

172.81366965 T35745 LXZBYZ|X 62|
4M2N12 172.81587606 T35755 LXZBZZ|Z 297|

| |
172.88652326 T37545 LXBZYZ|X 31|

4M2N12 172.88872967 T37555 LXBZZZ|Z 145|
| |

172.92979635 T38554 LXCZZY|Z 11|
| |

173.28739714 T43855 LYXCZZ|Z 153|
| |

173.35804433 T45645 LYZAYZ|X 107|
5MN12 173.36025075 T45655 LYZAZZ|Z 519|

| |
173.40131742 T46654 LYAAZY|Z 20|

| |
173.43089794 T47445 LYBYYZ|X 17|

5Mnu12 173.43310435 T47455 LYBYZZ|Z 82|
| |

173.83177183 T53755 LZXBZZ|Z 444|
| |

173.90021260 T55535 LZZZXZ|Z 8|
173.90241902 T55545 LZZZYZ|X 106|

M12 173.90462543 T55555 LZZZZZ|Z 518|
173.91611552 T55765 LZZBAZ|Z 46|

| |
173.94569211 T56554 LZAZZY|Z 20|

| |
173.98676271 T57555 LZBZZZ|Z 84|
173.98896912 T57565 LZBZAZ|Z 24|

| |
174.33507983 T62656 LAWAZA|Z 42|

| |
4MSN12 174.37614651 T63655 LAXAZZ|Z 895|

| |
174.40793344 T64456 LAYYZA|Z 10|

| |
174.44679370 T65445 LAZYYZ|X 16|

4ML12 174.44900011 T65455 LAZYZZ|Z 102|
4MNK12 174.45828379 T65655 LAZAZZ|Z 298|

174.46049020 T65665 LAZAAZ|Z 91|
| |

174.53113739 T67455 LABYZZ|Z 53|
| |

174.84766759 T71755 LBVBZZ|Z 290|
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D. Development of the potential, harmonic constituents

Twelfth diurnal (cont’d)
ARGUMENT

NAME deg/hour NUM ALPHA S26
| |

5MT12 174.87945451 T72556 LBWZZA|Z 54|
| |

174.91831478 T73545 LBXZYZ|X 172|
5MS12 174.92052119 T73555 LBXZZZ|Z 967|

| |
175.00045206 T75545 LBZZYZ|X 61|

5MK12 175.00265847 T75555 LBZZZZ|Z 331|
175.00486488 T75565 LBZZAZ|Z 99|
175.00707130 T75575 LBZZBZ|Z 11|

| |
175.04372515 T76554 LBAZZY|Z 10|

| |
175.08479575 T77555 LBBZZZ|Z 24|

| |
3M2SN12 175.39204227 T81655 LCVAZZ|Z 745|

| |
175.46489588 T83455 LCXYZZ|Z 19|
175.47417955 T83655 LCXAZZ|Z 454|

| |
5MSN12 175.54703315 T85455 LCZYZZ|Z 64|

175.54923957 T85465 LCZYAZ|Z 20|
| |

175.86356335 T9*755 LDTBZZ|Z 84|
| |

4MST12 175.89535028 T90556 LDUZZA|Z 109|
| |

175.93421054 T91545 LDVZYZ|X 143|
4M2S12 175.93641695 T91555 LDVZZZ|Z 1000|

| |
176.01634782 T93545 LDXZYZ|X 91|

4MSK12 176.01855423 T93555 LDXZZZ|Z 575|
176.02076065 T93565 LDXZAZ|Z 175|
176.02296706 T93575 LDXZBZ|Z 18|

| |
176.05962091 T94554 LDYZZY|Z 8|

| |
176.10069151 T95555 LDZZZZ|Z 98|

Twelfth diurnal (cont’d)
176.95010630 TE*545 LFTZYZ|X 61|

3(MS)12 176.95231272 TE*555 LFTZZZ|Z 587|
| |

177.03224358 TE1545 LFVZYZ|X 60|
3M2SK12 177.03444999 TE1555 LFVZZZ|Z 492|

177.03665641 TE1565 LFVZAZ|Z 150|
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Fourier transforms

and series

There are two types of signal representation:
• temporal representation f (t) in which the independent variable is

time t;
• a frequency representation F(n) in which the independent variable is the

frequency n, i.e. time−1, measured in hertz: 1 Hz = 1 cycle/second.
The switch from one to the other is done via the so-called Fourier (1768-

1830) transform. This transform can be extended to combinations other
than time-frequency. When the independent variable is a length, then we
may have the length-wave number combination, for instance. This appendix
summarises a number of definitions, general aspects and properties of
Fourier transforms and series, while also reviewing the role of distributions
in the analysis of sampled measurements with a regular time interval. In the
last part, as a supplement to Chapter VI, two examples are presented that
highlight the impact of the tide monitoring period (month and year) on the
number of tidal constituents that can be separated.

1 • Definitions and general aspects

Where the real function f (t) is representative of a physical phenomenon,
let us consider the two following cases:
• first case: function f (t) is a Fourier series of period T (corresponding

frequency nT = 1/T > 0), i.e. the value of the function is the same for t
and t ± kT, irrespective of the value of k ∈ N∗, i.e. a set of positive integers.
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E. Fourier transforms and series

The Fourier transform of the periodic function f (t) at frequency nm = mnT,
where m ∈ Z is a set of relative integers, is formulated as follows:

F(nm) =
1

T

∫
+T/2

−T/2
f (t)e−j2pmnTtdt (E.1a)

• second case: with any function f (t), the aperiodic character can be
considered as an extension of period T to infinity. Depending on the existing
conditions, the Fourier transform (FT) at frequency n of a function f (t), is
defined by:

F(n) = FT
[
f (t)

]
=

∫
t

f (t)e−j2pntdt (E.1b)

where the letter t under the integral symbol indicates that the integration
takes place throughout the −∞ to +∞ domain. The inverse Fourier trans-
form, denoted FT−1, is then obtained by:

f (t) = FT−1 [F(n)] =
∫

n

F(n)e+j2pntdn (E.2)

The amplitude spectrum of f (t) represents the absolute value |F(n)| as a
function of the frequency. For a periodic function, this spectrum is defined
for discrete frequencies nm = mnT. It is called the line spectrum with
a minimum error on the frequency axis of nT = 1/T. For any function
accepting a transform, the frequency interval nT then tends towards zero
and the spectrum becomes continuous, but only if function f (t) does not
contain any periodic constituents (e.g. turbulence). We demonstrate that a
nonperiodic real function f (t) must meet the following three conditions in
order to accept a Fourier transform FT

[
f (t)

]
:

• function f (t) should be bounded (no infinite values),
• its integral between−∞ and+∞ should have a finite value,
• its potential discontinuities and maxima and minima should be finite

throughout its domain.
The two functions f (t) and its transform F(n) represent the same phe-

nomenon in their respective domains (time, frequency). We demonstrate
that a number of properties are attached to these functions. If function f (t)
is considered real, thus Hermitian (formed with two complex conjugate ele-
ments), then equations (E.1a) and (E.1b) show that the transform preserves
this property, and thus:

F(n) = F∗(−n) (E.3)

Moreover, the two functions are linked by Poisson’s equation:∑
m∈Z

f (m) =
∑
n∈Z

F(n) (E.4)
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1. Definitions and general aspects

where the terms m or n ∈ Z under the sum symbol indicate that the
sum concerns the entire set Z. The crucial Plancherel theorem states that
the Fourier transform of a convolution product (∗) of two functions is the
simple product (×) of the corresponding products, and reciprocally. When:

FT
[
f (t)

]
= F(n) and FT

[
g(t)

]
= G(n)

this fundamental property is summarised by the following equations:

FT
[
f (t) ∗ g(t)

]
= F(n)× G(n)

FT
[
f (t)× g(t)

]
= F(n) ∗ G(n)

(E.5a)

and reciprocally:

FT−1 [F(n)× G(n)] = f (t) ∗ g(t)

FT−1 [F(n) ∗ G(n)] = f (t)× g(t)
(E.5b)

This theorem simplifies the calculations in many cases.
In the real environment, a quantifiable phenomenon is always observed

over a finite timespan T since the representative function of its temporal
change generally meets the existing transform conditions. However, it is
hard to apply the Fourier transform in studies focused on a continuous but
changing phenomenon due to the problem of sampling the representative
curve. In most cases, an analog signal f (t) (thus continuous) is sampled
over a regular time interval te between two consecutive readings – it is said
that the signal is sampled every te or at the frequency (or rate) of a value by
te(ne = 1/te). We obtain a series with a general term f (mte) having the value
m ∈ Z as sequence number (assuming that the representative function can
be sampled throughout its existing domain). Several sampling techniques
are available for the same signal, but there are two overall types:
• point sampling: the data are values of the continuous function f (t),

sampled at times t = mte;
• mean sampling: the sample every te is the result of the simple or

weighted (filtering) mean of f (t) calculated for all or part of the intervals
[mte, (m+ 1)te[.

Here we will only deal with regular point sampling. The continuous
function f (t) becomes a series of discrete values f (mte) and the question
then arises as to how the real transform F(n) can be extracted from this
series. It is nevertheless possible to determine F(n) from the sampled series
by applying the distribution theory (especially Dirac combs and rectangular
distributions) to solve this problem, provided that certain conditions are
fulfilled. Before dealing with this issue, it would be useful to review a few
points concerning distributions and their transforms.
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E. Fourier transforms and series

2 • Distributions and their transforms

Here we will summarise aspects concerning Dirac distributions and
combs, as well as rectangular distributions and the corresponding Fourier
transforms.

2.1 • Dirac distributions

A Dirac distribution d(x−xi) is a linear form equal to unity for x = xi and
zero elsewhere in the domain of the independent variable (x ∈ R). We adopt
the symbolism d(x− xi), despite the fact that it is an improper notation (dxi

is the correct one). Hence, we have:

d(x− xi) =

{
1 si x = xi

0 si x 6= xi,
(E.6)

Note that for xi = 0, with our convention, the distribution is formulated as
d(x). At frequency n, the Dirac transform d(t − ti) is perfectly defined by:

FT [d(t − ti)] =
∫

t
d(t − ti)e−j2pntdt = e−j2pnti (E.7)

As this transform is complex, the amplitude spectrum is then equal to

the norm
∥∥∥e−j2pnti

∥∥∥, of unit value regardless of the frequency, but its phase
spectrum is a linear function of the frequency (w = 2pnti). However, the
temporal function having a Dirac distribution d(n − ni) as spectrum is
obtained via the inverse transform, which gives:

FT−1 [d(n− ni)] =
∫

n

d(n− ni)e+j2pntdt = ej2pnit (E.8)

This complex exponent can be interpreted as the representative cyclic
function (in terms of polar coordinates) of a moving platform describing a
circumference with a radius of 1 at a constant angular velocity of 2pni, except
for ni = 0, a value for which FT−1 [d(n)] = 1. When considering Poisson’s
equation and equations (E.7) and (E.8), we deduce the equality:∑

m∈Z

d(t −m) =
∑
n∈Z

ej2pnt

This latter equation defines the two forms of the Dirac comb distribution at
unit rate, which we denote by X1(t), or:

X1(t) =
∑
m∈Z

d(t −m) =
∑
m∈Z

ej2pmt (E.9)

The subscript (1) attached here to X represents the time interval between
two successive Dirac distributions of the series. We will now examine the

368



2. Distributions and their transforms

properties of the comb distribution Xte(t), which has a more general scope
with an interval te between two successive Dirac distributions.

2.2 • Dirac comb distributions

A Dirac comb distribution Xte(t) is a periodic distribution, of period te,
defined by the following equation:

Xte(t) =
∑
m∈Z

d(t −mte) (E.10)

This distribution represents the mathematical operator for sampling all
continuous functions f (t) with a time step te. Hence:

f (t) · Xte(t) =
∑
m∈Z

f (t)d(t −mte) =
∑
m∈Z

f (mte) (E.11)

If we apply X1(t), as defined by equation (E.9), to a regular function h(t),
then:∫

t
h(t)

∑
m∈Z

d(t −m) · dt =
∑

m
h(m) =

∑
m

∫
t

h(t)ej2pmtdt (E.12)

When changing the variable such that h(t) = H(t/a), with a > 0, the last
equality of equation (E.12) may be formulated as:∑

m∈Z

H(m/a) = a
∑

m

∫
t

H(t/a)ej2pma(t/a)dt/a (E.13)

This leads to an equation similar to (E.9) defining X1(t), but with a
separate scale:

1

a

∑
m∈Z

d

(
t −

m

a

)
=

∑
n∈Z

ej2pnat (E.14)

Therefore, by taking a = 1/te, we obtain:

teXte(t) =
∑
m∈Z

ej2pm t
te (E.15)

Moreover, by taking equation (E.7) into account, the transform of comb
Xte(t) is formulated as:

FT
[
Xte(t)

]
=

∑
k∈Z

ej2pnkte (E.16)

When equation (E.14) is applied to n, we deduce from equation (E.16) that
the transform of a comb is a comb to the closest constant. Then:

FT
[
Xte(t)

]
=

1

te
· X1/te(n)
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E. Fourier transforms and series

where, with ne = 1/te:

FT
[
teXte(t)

]
= Xne(n) (E.17)

This very important latter result is the basis for the entire sampling the-
ory. Hence, the transform Xne(n), which also has a periodic distribution,
corresponds to the comb teXte(t) of period te, and this introduces the period
ne = 1/te in the frequency domain. We find this sequential repetition ne in
all transforms of functions ‘combed’ by teXte(t).

2.3 • Rectangular functions and distributions

A regular function f (t), representing a physical phenomenon, is only
known over a limited time interval. Sampling f (t) over a duration T nat-
urally leads us to define the rectangular distribution from the rectangular
function.

2.3.1 • Rectangular functions

The rectangular function is also an important signal processing tool. This
function, which is also called a ‘window’ or ‘slot’ function, is defined by its
width T on the time axis. It is equal to unity over the interval

[
ti, tj

]
, edges

included, such that tj − ti = T, and zero elsewhere. As a signal is generally
studied from a temporal origin over a given time T, we let PT(t) denote the
rectangular function defined according to the following elements:

PT(t) =

{
1 si t ∈ [0, T]

0 si t /∈ [0, T]
(E.18)

The rectangle is considered to be symmetrical when it is centred on the
zero mark of the variable (time or frequency). In a time domain, it is the
result of the convolution of Dirac d(t + T/2) with PT(t), which translates
the beginning of the new rectangle at time t = −T/2:∫

t

d(t+ T/2)PT(t − t)dt = PT(t + T/2). (E.19)

The transform of this symmetrical rectangle normalised by its width T is
expressed by:

FT

[
1

T
PT(t + T/2)

]
=

1

T

∫
t
PT(t + T/2)e−j2pntdt =

1

T

∫ T/2

−T/2
e−j2pntdt

The last integral of the previous equation thus gives:

FT

[
1

T
PT(t + T/2)

]
=

sin pnT

pnT
(E.20)
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2. Distributions and their transforms

This transform is even and its representative curve is symmetrical with
respect to axis n = 0. It is maximal and equal to unity for n = 0 and
it reaches relative extremes for frequencies n = (1/2 + k)nT with k ∈ Z
and nT = 1/T. The amplitudes of these extremes tend towards zero when
|n| → ∞. This function is cancelled out for frequencies of n = knT, here
with k ∈ Z∗ (set of relative integers, excluding zero). Note that when T tends
towards infinity, equation E.20 tends towards the distribution d(n). We have
seen that FT−1 [d(n)] = 1 for all t. The rectangular function PT(t), which
is considered as a convolution of PT(t + T/2) with d(t − T/2), enables us
to obtain its transform via the simple product of the respective transforms.
As this transform normalised by the width T is a continuous function which
keeps returning, we denote it by LT(n), where:

LT(n) = FT

[
1

T
PT(t)

]
= FT

[
1

T
PT(t + T/2) ∗ d(t − T/2)

]
=

sin pnT

pnT
e−jpnT (E.21)

This gives rise to a phase lag that is a linear function of the frequency
(pnT), while the modulus preserves the same characteristics as in (E.20), i.e.
the spectrum is identical. This transform LT(n) is one of the basic functions
used in studying any signal over a limited duration (0 ≤ t ≤ T).

2.3.2 • Rectangular distributions

A rectangular distribution of width T sampled by the comb teXte(t)
defines this distribution, but the term ‘rectangle’ often refers to the function
or distribution, depending on the setting. For the distribution, the width T
and the sampling interval te are always linked by T =Mte, with M being an
integer representing the number of samples (for simplification, M values are
always considered to be even in this appendix). Hence, PT,te(t) is the rect-
angular distribution resulting from the sampling of function PT(t) by the
comb teXte , with T = Mte. It may be expressed by:

PT,te(t) = teXte ·PT(t) = te

m=M−1∑
m=0

d(t −mte) (E.22)

It is important to note that the sampling is done from time t = 0 until
time t = (M− 1) te. We obtain a series of M values equal to te and, since
T = Mte, then:

1

Mte

m=M−1∑
m=0

ted(t −mte) = 1 =
1

T

∫ T

0
PT(t)dt (E.23)
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The sum of the series sampled in this way is equal to the integral of the
corresponding rectangular function, i.e. the sum of the series is identified
with the integral of the function when te tends towards zero. When consider-
ing the normalised rectangular distribution (E.22), its Fourier transform is
formulated as:

FT

[
1

T
PT,te(t)

]
= FT

[
te

T

m=M−1∑
m=0

d(t −mte)

]
=

1

M

m=M−1∑
m=0

e−j2pnmte

(E.24a)
Note that the series of the right hand side of equation (E.24a) represents

a geometric sequence ratio e−j2pnte . We denote this transform by LT,M(n),
and it thus becomes:

LT,M(n) = FT

[
1

T
PT,te(t)

]
=

1

M
·

e−j2pnMte − 1

e−j2pnte − 1

where:

LT,M(n) =
sin(pnT)

M sin(pnT/M)
e−jpnT(1−1/M) (E.24b)

A third expression of LT,te(n) may be obtained via the convolution prod-
uct:

LT,M(n) = LT(n) ∗ FT
[
teXte(t)

]
=

sin(pnT)

pnT
e−jpnT

∗ Xne(n)

which can be formulated, while recalling that:

Xne(n) =
∑
k∈Z

d(n− kne)

with ne = M/T :

LT,M(n) =
∑
k∈Z

sin
[
p(n+ kne)T

]
p(n+ kne)T

e−jp(n+kne)T (E.24c)

A comparison of LT(n), i.e. the transform of the normalised rectangular
function E.24, with LT,M(n), given in the three forms (E.24a), (E.24b) and
(E.24c), demonstrates that the sampling leads to a very clearcut modification
in the nature of the spectrum:
• the spectrum of the rectangular distribution is regenerated every kne

(periodicity) with LT,M(n) = LT,M(n+ kne); it is not possible to obtain the
exact sepctrum of the rectangular function by sampling; note that in equa-
tion (E.24b), the denominator is equal to Msin(pnT/M), which converges
around pnT when M tends towards infinity (te → 0);
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2. Distributions and their transforms

• we have seen that the spectrum of LT(n) has an absolute maximum
equal to unity for n = 0; because of the periodicity, the spectrum of LT,M(n)

reaches these absolute maxima, also equal to unity, for all n = kne;
• as the two transforms are Hermitian with LT(n) = L

∗
T(−n) and

LT,M(n) = L
∗
T,M(−n), the two spectra are symmetrical with respect to axis

n = 0; however, due to the seqential repetition of LT,M(n), n = kne are also
symmetry axes for the rectangular distribution spectrum;
• when Dn represents any positive or negative frequency error, the peri-

odic and Hermitian character of LT,M(n) leads to the following equality:

LT,M(ne/2− Dn) = L
∗
T,M(ne/2+ Dn+ kne)

This equation can be readily verified through the different equations for
LT,M(n) and generates the spectrum with an additional property, i.e. the
axes n =

(
1/2+ k

)
ne are also symmetry axes of this spectrum. This

phenomenon is called aliasing. nN = ne/2 is called the Nyquist frequency.
A good image of the transform LT(n) is thus obtained by LT,M(n) while

restricting it to the frequency interval (−nN, nN), but this image does not
retrieve the constituents of LT(n) outside of this domain. However, if we
integrate the two intervals, i.e. temporal T and frequential ne = 2nN, each in
its domain at the periods, we have:

M =
T

te
=

ne

nT
(E.25)

At the normalised rectangular distribution (discrete series of time step te):

1

T
PT,te(t) =

te

T
Xte ·PT(t) =

1

M

m=M−1∑
m=0

d(t −mte) (E.26)

we can thus map a discrete transform (line spectrum every nT = 1/T) in
the symmetrical rectangular frequency distribution of width ne, having the
same number of terms M. Indeed, from LT,M(n) defined by equation E.24b)
and noting that nN = ne/2 = MnT/2, we then obtain the following series:

LT,M(n) ·

n=M/2−1∑
n=−M/2

d(n− nnT)

=

n=M/2−1∑
n=−M/2

sin np

M sin(np/M)
e−jnp(1−1/M)

= d(n) (E.27)

All of the terms of this transform discretised to values n = nnT are zero,
apart from the term for which n = 0, which corresponds to the Dirac
d(n) whose inverse transform has unit value. Note that the discretisation of
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LT(n) expressed by equation (E.21) gives the same result. We thus obtain
the same image for the respective discrete spectra of the function and of
the normalised rectangular distribution in the frequency interval (−nN, nN).
As the inverse transform of (E.27) is equal to unity, its sampling within the
interval (0, T) again clearly gives the rectangular distribution (E.26). There
is complete correspondence between the two equations. We will see that
this correspondence is a property common to all functions that accept a
Fourier transform and that are sampled over a given time interval. Note
that these discrete Fourier transforms (DFT), which are more often called
Fourier series, are the result of the ‘sampling-periodisation’ duality in the
two domains, i.e. temporal and frequential. These tools facilitate the analysis
of series of data representing discrete values of a signal sampled regularly
over a given time interval.

3 • Real periodic functions

Recall that a real function f of a real variable t is considered to be periodic,
i.e. of period T (positive number), if the function value is the same for t and
t ± kT (k ∈ N∗).

3.1 • Periodic series

Let us consider the complex exponential series∑
m∈Z

lmej2pnmt

where the frequencies nm are defined by nm = mnT(m ∈ Z) and nT =

1/T > 0), with the complex coefficients (lm ∈ C) satisfying equation
lm = l

∗
−m. This series thus defines a real trigonometric series, expressed

in complex notation. On condition that the sum is bounded, this series is
representative of a real periodic function of period T and is defined for all t.
Its value is the same for all points t ± kT and does not depend on k ∈ N∗.
It is thus a function f (t), defined for all t values, and of period T. If there is
a trigonometric series for which f (t) is the sum, it would define the Fourier
series of the function, which in complex notation is:

f (t) =
∑
m∈Z

lmej2pmnTt (E.28a)

374
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This Fourier series can be formulated in different forms, here with
nn = nnT (n ∈ N):

f (t) = l0 +
∑

n∈N∗

[
lne+j2pnnTt

+ l
∗
ne−j2p.nnTt

]
(E.28b)

f (t) =
c0e−jw0

2
+

∑
n∈N∗

cn

2

(
e+j(2pnnTt−wn)

+ e−j(2pnnTt−wn)
)

(E.28c)

f (t) =
a0

2
+

∑
n∈N∗

cn cos(2pnnTt − wn) (E.28d)

f (t) =
a0

2
+

∑
n∈N∗

[
an cos(2pnnTt)+ bn sin(2pnnTt)

]
(E.28e)

Thus, for n ∈ N∗ (ln ∈ C); cn ∈ R+; an, bn ∈ R), as f (t) is a real function,
the different coefficients are linked by the following equations:

ln =
cn

2
e−jwn =

an − jbn

2
(E.29)

The following equations are deduced:

a2
n + b2

n = c2
n = 4lnl

∗
n

an = cn cos wn = ln + l
∗
n

bn = cn sin wn = j
(
ln − l

∗
n
)

For n = 0, the mean l0 of the function over a period T (or an integer
multiple) is real, and hence 2l0 = c0ejw0 = a0, with w0 = 0 if l0 > 0 and
w0 = p if l0 < 0, where b0 is obviously zero. Hence, when a real periodic
function f (t) of period T is known, the question is to know:
• firstly, the conditions under which this function can be represented by a

Fourier series,
• secondly, how to calculate the coefficients of this series.

3.2 • Fourier transform of a periodic function

In order to be able to expand a periodic function f (t) in a Fourier series,
the function has to be bounded, continuous and integrable. This is Jordan’s
theory, which states that “If (a function) f (x) is periodic with the variation
bounded within all finite intervals, its Fourier series is uniformly convergent
within all intervals where f (x) is continuous.” Let us suppose that the
conditions of a Fourier series for the periodic function f (t) of period T are
fulfilled. We have seen at the beginning of this appendix that the Fourier
transform of a periodic function f (t), at frequency nm = mnT (with m ∈
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Z and nT = 1/T), is defined by the integral (E.1a). When function f (t) is
replaced by its form (E.28a), it becomes:

F(mnT) =
1

T

∫
+T/2

−T/2

∑
m∈Z

lmej2p(m−m)nTtdt

=

∑
m∈Z

lm

(
1

T

∫ T/2

−T/2
ej2p(m−m)nTtdt

)
(E.30)

Integration of the bracketed part in the general term of the second series
in the above equation gives:

1

T

∫
+T/2

−T/2
ej2p(m−m) t

T dt =
eip(m−m)

− e−ip(m−m)

2jp(m−m)

=
sin [p(m−m)]

p(m−m)
= d(m−m) (E.31)

where:

F(mnT) =
∑
m∈Z

lmd(m−m) (E.32a)

All terms of the series (E.32a) are zero except that of rank m = m. The
transform F(n) at frequency n = mnT of the periodic function f (t) of period
T is only the Fourier coefficient lm, or:

lm = F(n) · d(n−mnT) (E.32b)

For m = 0, we obtain the value l0, i.e. the mean of the considered
periodic function f (t). We have just seen how it is possible to determine the
Fourier series of a real periodic function that is continuous and bounded
within all finite intervals. Note that equation (E.42) can be interpreted
as the frequential sampling of a transform F(n) every nT = 1/T. The
periodic series (E.28a) can then be assimilated to the inverse transform of
F(n) sampled by the comb XnT(n):

f (t) = FT−1 [F(n) · XnT(n)
]
= FT−1 [F(n)] ∗ T.XT(t)

Hence, since the transform of a comb is a comb to the closest constant
(E.17), the convolution of the inverse transform with XT(t) results in func-
tion f (t) being periodic of period T with: f (t) = f (t + kT) k ∈ Z∗. More-
over, it is important to note that the spectrum of the periodic function f (t)
of period T is not a continuous spectrum. It consists of lines with an elemen-
tary error on the frequency axis being nT. As the function is real, its ampli-
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4. Sampled real functions

tude spectrum is completely defined for discrete frequencies n = nnT ≥ 0
(n ∈N), with:

|F(n)| =
c0

2
d(n)+

∑
n∈N∗

cnd(n− nnT) (E.33)

where the coefficients cn are defined by equation (E.29). Let us now look
at the general case of a real function that is representative of the temporal
pattern of a quantifiable and continuous phenomenon sampled at a regular
interval every te over a period T.

4 • Sampled real functions

Recall that only the point sampling situation is studied here (as we also
did for the rectangular function, see § 3.2), i.e. that of the function sampled
by the comb teXte(t), which can be defined under these two forms with
ne = 1/te:

teXte = te
∑
m∈Z

d(t −mte) =
∑
m∈Z

ej2pmnet (E.34)

4.1 • Sampling throughout the existing domain

Let us consider a continuous and integrable real function f (t) accepting
the transform F(n) defined by (E.1b). Let fte(t) denote the sampled function
throughout its existing domain by (E.34). This latter can be expressed by the
following equivalent equations:

fte(t) = teXte f (t) = te
∑
m∈Z

f (t)d(t −mte) (E.35a)

where

fte(t) = teXte f (t) =
∑
m∈Z

f (t)ej2pmnet (E.35b)

Note that we have: ∑
m∈Z

tef (mte) −−−→
te→0

∫
t

f (t)dt

Therefore, when the sampling interval te tends towards zero, the limit
of the sum of the series is the integral of the continuous function f (t).
The question arises as to how to recover this transform F(n) from this
sampled series. For the rectangular function, we have seen that it is not
possible to reconstruct its continuous spectrum by sampling, except when
T tends towards infinity. However, an identical image of the spectrum
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E. Fourier transforms and series

has been obtained via discrete transforms (or Fourier series) by taking the
sampling-periodisation duality into account in both the time and frequency
domains. Let us thus consider the sampled function fte(t), which satisfies
the conditions set out at the beginning (bounded, integrable function with
a finite number of discontinuities in its existing domain). It also accepts a
Fourier transform: F(te)(n) =FT

[
fte(t)

]
, where the subscript (te) in F(te)(n)

means that it is the transform of a function sampled at the rate te. F(te)(n)

can be calculated directly on the basis of the transform definition. When
taking expression (E.35a) of fte(t), we obtain a first equation that defines the
transform which is a continuous function of frequency n:

F(te)(n) = te

∫
t

∑
m∈Z

d(t −mte)f (t)e−j2pntdt

= te
∑
m∈Z

f (mte)e−j2pnmte (E.36a)

By using the properties of the transforms summarised in equation (E.6),
we also have:

F(te)(n) = FT
[
teXte

]
∗ FT

[
f (t)

]
= Xne(n) ∗ F(n)

or a second equivalent equation, while recalling that:

Xne(n) =
∑
k∈Z

d(n− kne)

F(te)(n) =
∑
k∈Z

d(n− kne) ∗ F(n) =
∑
k∈Z

F(n− kne) (E.36b)

This result means that the spectrum of fte(t) is that of f (t), but ‘periodised’,
i.e. that this latter regenerates itself on the frequency axis with a period of
ne = 1/te, as for the ‘rectangle’. It is thus not possible to reconstruct the
functions f (t) or F(n) solely based on knowledge of fte(t) or of F(te)(n). Gen-
erally there is an infinite number of solutions. Recall that, as the sampled
function fte(t) is real and thus Hermitian, its transform preserves this prop-
erty: F(te)(n) = F∗(te)

(−n). We thus find the two families of spectrum sym-
metry axes, as for the rectangle. The spectrum of the sampled real function
fte(t) is symmetrical in the frequency domain relative to all axes of equation
n = kne, with k ∈ Z. Moreover, the periodisation ne (induced by the sam-
pling) and the Hermitian trait lead to the equality:

F(te)(nN − Dn) = F∗(te)
(nN + Dn+ kne)

where nN = ne/2 is the Nyquist frequency, Dn any frequency error, and
k ∈ Z. This latter equality gives rise to a second family of spectrum
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4. Sampled real functions

symmetry axes with the equation n = nN + kne (with here k ∈ Z∗). This
type of symmetry introduces aliasing, as with the rectangular distribution.
If precautionary measures are not taken during the sampling, aliasing of
high frequency constituents (n > nN) of the true spectrum will occur at
low frequencies of the fte(t) spectrum. Let us suppose, however, that f (t) has
a transform F(n) whose maximum frequency in absolute value is nM > 0, i.e.
F(n) is zero for all frequencies with absolute values being |n| ≥ nM > 0. The
spectrum of the real function f (t) will then stretch over a width of 2nM from
−nM to nM.

To ensure that the true spectrum pattern is not modified by the periodic
repetition introduced by the comb Xte(t), the sampling frequency ne must
be above or equal to 2nM (Shannon’s theorem):

ne ≥ 2nM ⇒ te =
1

ne
≤

1

2nM
(E.37)

When the signal has frequencies |n| ≥ ne, frequencies whose absolute
values are at least twofold higher than that of the sampling should be filtered.
Hence, for any real function f (t), and assuming a Fourier transform F(n)

and sampling throughout the existing domain at a rate that is in line with
Shannon’s condition (ne ≥ 2nM), the transform F(te)(n) limited to the
frequency interval (−ne/2 < n < ne/2), i.e. corresponding to the term
k = 0 of the equation (E.36b), is then equal to F(n):

d(k) · F(te)(n) = F(n) (E.38)

As the functions considered here are real, their transforms are Hermitian
and, when the spectrum in the domain (0, ne/2) is known, the total spec-
trum in (−ne/2 < n < ne/2) will be known.

4.2 • Sampling over a limited period

In practice, signals are studied over a limited period T. The continuous
real function f (t) is therefore not known throughout its existing domain, but
it is perceived through the rectangle PT(t). The Fourier transform FT(n) of
the known part of the function is thus expressed by:

FT(v) = FT

[
1

T
PT(t)f (t)

]
=

1

T

∫ T

0
f (t)e−j2pntdt = LT(n) ∗ F(n) (E.39)

LT(n) is given in equation (E.21).
Once a signal has been identified in this way it may be interpreted in two

ways:
• either its representative function is periodic and of period T, and the

signal may be known for all t;
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E. Fourier transforms and series

• or it is aperiodic and the transform of its known part is the convolution
product of LT(n), i.e. the transform of the rectangle normalised by its width
T, with the transform of the entire signal; the complete spectrum then cannot
be obtained.

To be able to process the signal on a computer, the sampling must be done
at a time frequency te over a given duration T, which results in broadening
the initial signal by introducing period ne in the frequency domain. Similarly,
we have seen that sampling a continuous spectrum (every nT = 1/T)
generates a discrete spectrum (or line spectrum) and a signal of period T.

We have already examined the effect of sampling on the rectangular func-
tion. This first example will enable us to quickly detect the impact of this
discretisation on simple periodic functions, i.e. the complex cyclic function
ej2pnit and the cosine function.

4.2.1 • Complex cyclic functions

We have already seen (2.1) that the Fourier transform of the complex
exponential cyclic function ej2pnit, with ni ∈= lim Re, is the Dirac d(n− ni):

FT−1 [d(n− ni)] =
∫

t
d(n− ni)ej2pntdt = ej2pnit

Let us therefore consider the distribution defined by equation (E.26) with
T = Mte. Sampling ej2pnit in this rectangle provides M readings. It is
obviously assumed that the sampling interval te is in line with Shannon’s
criterion, i.e. ne = 1/te > 2 |ni|. We thus have the sampled function:(

ej2pnit
)

T,te
= ej2pnit ·

1

T
PT,te(t)

Since LT,M(n), as defined by (E.24a), is the transform of the considered
rectangle, then:

FT

[(
ej2pnit

)
T,te

]
= d(n− ni) ∗ LT,M(n) = LT,M(n− ni) (E.40a)

or when specifying from equation (E.24b):

LT,M(n− ni) =
sin [p(n− ni)T]

M sin [p(n− ni)T/M]
e−jp(n−ni)T(1−1/M) (E.40b)

It can be noted that:

LT,M(ni − n) = L
∗
T,M(n− ni) (E.40c)

Hence, the transform of the function ej2pnit, sampled by the normalised
rectangular distribution is no longer the Dirac distribution d(n − ni) but
rather the periodic continuous function LT,M(n−ni) = LT,M(n−ni+ kne)
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4. Sampled real functions

of period ne = M/T. Its spectrum is that of the normalised rectangular
distribution, translated to all frequencies n = ni + kne (k ∈ Z), with the
spectrum value being equal to unity.

All axes n = ni + kne are obviously spectrum symmetry axes. As the
initial function ej2pnit is complex, the transform of the sampled function is
therefore not Hermitian and the axes n = kne are not spectrum symmetry
axes. Aliasing is thus not possible from axes n = nN+kne (n.b. nN = ne/2 =
M/2T, the Nyquist frequency). For a complex function, only the periodicity
ne holds for the transform. When the width of rectangle T is a multiple of the
cyclic function period, its frequency can be formulated as ni = kinT, with
ki ∈ Z contained within the interval (−M/2, M/2), excluding boundaries.
When LT,M(n − kinT) is sampled by the discrete spectral rectangle within
the interval (−nN, nN) with a step nT, we obtain a discrete spectrum formed
only by the Dirac distribution d(n− kinT). The calculation is similar to that
done for the rectangle (E.27).

Hence, by double sampling:
• temporal sampling at step te and duration T of the initial continuous

function (here the complex exponent ej2pnit),
• frequential sampling at step nT in the limited interval (−nN, nN) of the

continuous transform of the sampled signal,
we find a complete correspondence between the two series, with each

containing M terms and the image of the true spectrum can be obtained
on condition that the width T of the rectangle is a multiple of the period
of the studied function. Clearly, if the frequency ni is higher in absolute
value than the Nyquist frequency nN, the problem cannot be solved (out
of line with Shannon’s theorem). The spectral peak obtained within the
interval (−nN, nN) corresponds to a specific value k = kn ∈ Z, such that:
−nN < ni + knne < nN

Hence, because of the periodicity, sampling of an HF signal (high fre-
quency: |ni| > nN) will reveal, within the interval (−nN, nN), LF energy
which actually does not exist in the true spectrum (stroboscopic effect).

4.2.2 • Cosine functions

Let us consider the following cosine function, with ni > 0:

Ci(t) = 2 cos(2pnit) = ej2pnit + e−j2pnit (E.41)

Its Fourier transform is:

FT [Ci(t)] = d(n− ni)+ d(n+ ni) (E.42)

When taking the previous results into account, the continuous transform
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E. Fourier transforms and series

xT,M,i(n) of the function sampled in the rectangle of width T = Mte, is
formulated as:

xT,M,i(n) = [d(n− ni)+ d(n+ ni)] ∗
[
LT,M(n)

]
or:

xT,M,i(n) = LT,M(n− ni)+ LT,M(n+ ni) (E.43)

or, when accounting for equation (E.40b):

xT,M,i(n) = L
∗
T,M(ni − n)+ LT,M(ni + n)

Besides the periodicity ne = M/T, which is common to all transforms of
functions combed by teXte , and as the cosine function is real and therefore
Hermitian, its transform preserves this property, and we have:

xT,M,i(n) = x
∗

T,M,i(−n) (E.44)

xT,M,i(nN − Dn) = x
∗

T,M,i(nN + Dn+ kne) (E.45)

This leads to the symmetry property of the amplitude spectrum∣∣
xT,M,i(n)

∣∣ relative to the two axis families of equations: n = kne and
n = nN + kne, with k ∈ Z.

This property, which has already been noted on several occasions, is
specific to all real functions accepting a transform, with aliasing relative to
the Nyquist frequency (nN = ne/2 = 1/2te). If the duration T is a multiple
of the period of the considered function, by performing double sampling,
i.e. temporal te over the duration T = Mte and frequential nT within
the interval (−nN, nN), we obtain an image of the true spectrum given by
equation (E.42).

In summary, if the sampling theory is respected, the combined effect of
the periodicity (symmetry relative to the axes n = kne) and the aliasing
(symmetry relative to n = nN+kne) is that the spectrum of a real function is
here completely defined in the positive frequency domain (0, nN). However,
for complex magnitudes, only the periodicity and the spectrum should be
defined in the frequency domain (−nN, nN).

Figure E.1 highlights the different spectrum symmetries depending on
whether the continuous transform of a sampled cyclic function is taken into
account or that of the cosine function, i.e. the sum of two cyclic functions of
opposite angular velocities.
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E. Fourier transforms and series

5 • Application to tides

The tidal phenomenon is a very special situation. Although the tide is
viewed as being a regular movement phenomenon, it is not periodic. Even
saros is not a period for tide (see Appendix A, 2.2). It is, however, the sum of
a certain number of periodic constituents and its Fourier transform is a sum
of Dirac distributions weighted by the amplitudes of corresponding waves.
It thus has a line spectrum but its frequential sampling by a larger common
denominator is not possible. The absence of periodicity is due solely to the
fact that the frequencies of the different tidal constituents are not measurable.
Hence, h(t) is the tidal height at time t supposedly reduced to its constituents
i–the value of i is considered here to be a number of around (i ∈ N∗)
according to increasing (positive) frequencies. Each constituent is defined
by three elements: the amplitude ai, frequency ni (≥ 0) ) and phase wi at
time zero t = 0. Function h(t) can thus be formulated (for simplification, it
can at first be assumed that the mean level is zero):

h(t) =
∑
i∈N∗

hi(t) =
∑
i∈N∗

ai cos(2pnit − wi) (E.46)

Where the complex conjugate amplitudes are denoted by hi = aie
−jwi/2

and h
∗

i = aie
jwi/2, then:

hi(t) = hie
j2pnit + h

∗

i e−j2pnit (E.47)

The Fourier transform hi(t) is thus the sum of two Dirac distributions
with opposite frequencies (ni and −ni), weighted by complex conjugate
amplitudes (hi and h

∗

i ):

FT
[
hi(t)

]
= hid(n− ni)+ h

∗

i d(n+ ni) (E.48)

Where F(n) denotes the transform of h(t) throughout its existing domain,
the tide has a line spectrum with a unique distribution, i.e. these lines are
distributed around each species (≈ ±2.5°/h) and the species are separated
by 14.492°/h (= 360°/TL, where TL = 24.841 2 h is a lunar day):

F(n) = FT
[
h(t)

]
=

∑
i∈N∗

[
hid(n− ni)+ h

∗

i d(n+ ni)
]

(E.49)

In practice, tidal sampling (E.45) by the normalised rectangular distri-
bution gives us the series hT,te(t) of M values with T = Mte. Its Fourier
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transform FT,M(n), as a continuous function of n, is thus given by the series:

FT,M(v) = FT

[
1

T
PT,te(t)h(t)

]
= FT

[
hT,te(t)

]
=

1

M

m=M−1∑
m=0

h(mte)e−j2pnmte (E.50a)

or even by the convolution:

FT,M(v) = FT

[
1

T
PT,te(t)h(t)

]
= LT,M(n) ∗ F(n)

When taking equations (E.40b) and (E.49) into account, which define
LT,M(n) and F(n), respectively, this latter form of the transform FT,M(n) can
also be expressed by:

FT,M(n) =
∑
i∈N∗

[
hiL
∗
T,M(ni − n)+ h

∗

i LT,M(ni + n)
]

(E.50b)

Like all real functions sampled with a time te and accepting a transform,
we have:
• the periodicity ne: FT,M(n) = FT,M(n+ kne), with k ∈Z,
• the Hermitian character: FT,M(n) = F∗T,M(−n), which results in the

symmetry of the spectrum relative to the axes n = kne;
• the symmetry of the spectrum relative to the axes n = nN+kne (aliasing,

as a consequence of the two previous properties, where nN = ne/2 is the
Nyquist frequency) with the equation:

FT,M(nN − Dn) = F∗T,M(nN + Dn+ kne)

On condition that Shannon’s theorem is applied, the complete definition
of the spectrum can be obtained in the window (−nN, nN). Recall that the
transform FT,M(n) is a continuous function of the frequency n. It is pos-
sible to determine the corresponding discrete Fourier transform (DFT)(or
Fourier series) by considering the symmetrical spectral rectangle [−nN, nN]
of width ne. It is represented by the part of comb XnT(n) which consists of
the sequence of M frequencies nk = knT, with nT = 1/T and k ranging from
−M/2 to (M/2− 1). This gives us the relations between the different param-
eters: M = T/te = ne/nT. The continuous transform FT,M(n) becomes the
Fourier series (or DFT): d(n−knT).FT,M(n) = FT,M(knT) which is expressed
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from equation (E.50a) by:

FT,M
(
knT

)
=

1

M

m=M−1∑
m=0

h(mte)e−j2p
k
T m T

M

=
1

M

m=M−1∑
m=0

h(mte)e−j2p
k
M m (E.51)

Based on equation (E.50b), it is also possible to obtain another form of the
series. The inverse relation of the DFT described by equation (E.51) gives the
series of h(mte) values. It is obtained by:

h(mte) =

k=M/2−1∑
k=−M/2

FT,M
(
knT

)
ej2p

k
T m T

M

=

k=M/2−1∑
k=−M/2

FT,M
(
knT

)
ej2p

m
M k (E.52a)

The last series of equation (E.52a) can also be formulated by taking equa-
tion (E.51) into account:

k=M/2−1∑
k=−M/2

FT,M
(
knT

)
ej2p

m
M k

=

k=M/2−1∑
k=−M/2

(
1

M

m=M−1∑
m=0

h(mte)e−j2p
k
M m

)
ej2p

m
M k (E.52b)

or:

k=M/2−1∑
k=−M/2

FT,M
(
knT

)
ej2p

m
M k

=

m=M−1∑
m=0

h(mte)

 1

M

k=M/2−1∑
k=−M/2

e−j2p
(m−m)

M k

 (E.52c)

while the bracketed part on the right side of the equation gives:

1

M

k=M/2−1∑
k=−M/2

e−j2p
(m−m)

M k
=

sin p(m−m)

M sin [p(m−m)/M]
ejp(m−m)

= d(m−m)

Equation (E.52c) then becomes:

k=M/2−1∑
k=−M/2

FT,M
(
knT

)
ej2p

m
M k
=

m=M−1∑
m=0

h(mte)d(m−m) = h(mte) (E.52d)
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Hence, the M values of the discrete Fourier series, as defined by equation
(E.51), enable complete reconstruction of the initial sampled signal. There
is a complete equivalence between the signal h(mte), with m ranging from
0 to (M − 1) and its transform FT,M(knT), with k ranging from −M/2 to
(M/2− 1).

When taking the Hermitian character of the DFT into account, let:

FT,M(nnT) = F∗T,M(−nnT) =
cn

2
e−jfn

with n ≥ 0 and cn ∈R+ (f0 is zero, and here we assume the mean level
FT,M(0) = c0/2 ≥ 0). While respecting Shannon’s theorem, at the Nyquist
frequency nN = MnT/2 > 2nM, the corresponding constituent is zero.
Then equation E.52d) giving h(mte) can still be formulated as (n.b. T =
Mte):

h(mte) =
c0

2
+

n=M/2−1∑
n=1

cn cos(2p

n

T
mte − fn) (E.52e)

This latter result should be compared to the periodic function (E.28d). More-
over, as long as several conditions are fulfilled, especially:
• respecting the sampling theorem;
• T, being a multiple of a period of a constituent i of the signal (ni =

ni/T);
• frequency errors (ni−ni−1) and (ni+1−ni) of over nT = 1/T (Rayleigh’s

criterion; so the characteristics of constituent i may be deduced from equa-
tions (E.45) and (E.52e):

ni = ninT ⇒ ai = cni

and

wi = fni

If the two latter conditions are not fulfilled, the value of the cn term will
then represent a linear combination of several constituents, with each being
weighted by a function coefficient of the error |ni − nn|.

To optimise the DFT computation time, Cooley and Tuckey developed the
first elaborate algorithm, i.e. the so-called fast Fourier transform (FFT) by
utilising symmetries present in complex exponential series. Although they
were incorrectly called fast Fourier transforms (FFT), the distribution theory
demonstrated that they are true transforms. The name FFT is currently more
common than DFT (for discrete Fourier transform). The efficiency of com-
putational algorithms increases as the power of the first factors derived from
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the M value (sample number) increases. Maximum efficiency is obtained
when the number M is a power of 2.

6 • Constituents separated according to the observation
period

As an example of a harmonic analysis application, which is the focus of
Chapter VI, the following two lists were drawn up on the basis of observa-
tions of semidiurnal tides. These lists highlight the impact of the measure-
ment period (month and year) on the fineness of the analysis for separat-
ing neighbouring constituents within each species. For a given observation
period, each line is relative to a tidal constituent (which can be separated
over this duration) with its name and extended literal argument (seven let-
ters), as well as the elements required for calculating disturbances due to con-
stituents that cannot be separated. These elements are, for each of these lat-
ter constituents, the extended literal argument and the amplitude (expressed
in mils of the amplitude of the main constituent. For other types of tide, a
few modifications are required to account for nonlinear interactions respon-
sible for getting certain diurnal constituents more involved. It is thus useful
to refer to the development of the potential and the list of compound waves
presented in Appendix D. When all species up to the twelfth diurnals are
taken into account, an examination of the two lists shows that with 1 year of
observations it is possible to separate nearly 350 constituents, and that with
1 month of observations only around a hundred can be identified.

6.1 • Observation period: a month

Niv Moy ZZZZZZZ

Mm ZAZYZZZ ZAXAZZZ 191 ZAZYAZB 65 ZAZAZZB 53 ZAZAAZB 22 ZABYZZB15

Mf ZBZZZZZ ZBZZAZZ 414 ZBXZZZZ 88 ZBZXZZZ 43 ZBZZBZZ 38

Mfm ZCZYZZZ ZCZYAZZ 416 ZCXAZZZ 188 ZCXAAZZ 74 ZCZYBZZ 40

MSqm ZDXZZZZ ZDXZAZZ 417

AVBAZZY AVZCZZY 393 AVDYZZY 179

SIGMA1 AWBZZZY AWZBZZY 826 AWBZYZY 191 AWZBYZY 157 AWCZZYY 70

Q1 AXZAZZY AXBYZZY 190 AXZAYZY 188 AXBYYZY 36 AXBAZZA 11 AXAAZYY10

01 AYZZZZY AYZZYZY 189 AYBZZZA 13 AYZBZZA 6 AYZZXZA 6 AYYZZAA 3

M1 AZZAZZA AZZYZZA 361 AZZAAZA 199 AZBYZZA 193 AZXAZZA 95 AZZYYZA 68

K1 AAZZZZA AAXZZZY 331 AAZZAZA 136 AAZZYZY 20 AAWZZAY 19 AABZZZA 14

J1 ABZYZZA ABZYAZA 199 ABXAZZA 193 ABXAAZA 37 ABZYYZY 30

OO1 ACZZZZA ACZZAZA 636 ACXZZZA 302 ACZXZZA 148 ACZZBZA 136 ACXZAZA 62
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KQ1 ADZYZZA ADXYZZA 400 ADXAZZA 300

2MN2S2 BUDAZZZ

2NS2 BVBBZZZ BVDZZZZ 636 BVBZZZZ 545

MNS2 BWBAZZZ BWZAZZZ 537 BWZCZZZ 388 BWDYZZZ 194 BWBAYZZ 134 BWCAZYZ 75

MU2 2MS2 BXBZZZZ BXZBZZZ 830 BXZZZZZ 235 BXXZZZZ 108 BXCZZYZ 69 BXBZYZB 36

N2 BYZAZZZ BYBYZZZ 190 BYZAYZB 37 BYAAZYZ 9 BYCYZYZ 9 BYBYYZB 7

M2 BZZZZZZ BZZZYZB 37 BZXZZZZ 4 BZYZZAB 3 BZAZZYZ 3 BZXBZZB 3

L2 2MN2 BAZYZZB BAXAZZB 262 BAZAZZZ 250 BAZAAZZ 109 BABYZZZ 47 BAZYYZZ 35

S2 BBXZZZZ BBZZZZZ 272 BBZZAZZ 81 BBWZZAZ 58 BBYZZYB 10 BBZZBZZ 9

MSN2 BCXYZZZ BCZYZZZ 557 BCZYAZZ 243 BCXAZZZ 104

2SM2 BDVZZZZ BDXZZZZ 810 BDXZAZZ 246 BDZZZZZ 204 BDZZAZZ 141 BDUZZZA 120

SKN2 BEXYZZZ

3SK2M2 BFVZZZZ

CVBAZZY CVZCZZY 545

CWZBZZY CWBZZZY 853 CWZBYZY 147

MQ3 CXZAZZY CXBYZZY 185 CXZAYZY 149

2MK3 CYZZZZY CYZZYZY 149 CYBZZZA 56 CYZBZZA 51 CYZAZZB 18 CYXBZZY 15

M3 CZZZZZZ CZZZYZB 56

MK3 CAZZZZA CAXZZZY 725 CAZZAZA 119 CAZZYZY 81 CAWZZAY 40 CABZZZA 19

2MQ3 CBZYZZA CBXAZZA 939 CBZAZZA 636 CBXYZZA 606 CBZZZZB 394 CBZAAZA 364

SK3 CCXZZZA CCZZZZA 376 CCVZZZZ 331 CCZZAZA 170 CCXZAZA 121 CCWZZZB 62

CDXYZZA CDZYZZA 741 CDZYAZA 407

2SO3 CEVZZZA

DVBBZZZ DVDZZZZ 429

2MNS4 DWBAZZZ DWZCZZZ 536 DWDYZZZ 179

N4 DXZBZZZ DXBZZZZ 872

MN4 DYZAZZZ DYBYZZZ 186 DYZAYZB 73

M4 DZZZZZZ DZZZYZB 74 DZXBZZZ 15 DZBZZZZ 11 DZAZZYZ 8

SN4 DAXAZZZ DAZAZZZ 379 DAZYZZB 137 DAZAAZZ 124

MS4 DBXZZZZ DBZZZZZ 273 DBZZAZZ 81 DBWZZAZ 55 DBXZYZB 34 DBZZYZB 13

2MSN4 DCXYZZB DCZYZZB 308

S4 DDVZZZZ DDXZZZZ 555 DDXZAZZ 166 DDUZZAZ 118 DDZZZZZ 95 DDZZAZZ 62

EVBAZZY EVZCZZY 633

EWZBZZY EWBZZZY 708 EWZBYZY 117

2MQ5 EXZAZZY EXBYZZY 181 EXZAYZY 114

4MK5 EYZZZZY EYZBZZA 123 EYZZYZY 110 EYXBZZY 99 EYBZZZA 97 EYAZZYY 13

EZXAZZY EZZAZZA 997

2MP5 EAXZZZY EAZZZZA 848 EAZZYZY 124 EAZZAZA 84 EAWZZAY 53 EABZZZA 30

EBXAZZA EBZAZZA 457 EBVAZZY 399 EBZAAZA 218 EBXYZZA 213 EBZYZZA 202

2SK5 ECXZZZA ECVZZZY 601 ECZZZZA 369 ECZZAZA 161 ECXZAZA 98

EEVZZZA EEXZZZA 790 EETZZZY 398 EDZYZZA 155 EDXYZZA 133 EDZYAZA 88
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2(MN)S6 FVBBZZZ FVDZZZZ 438

3MNS6 FWBAZZZ FWZCZZZ 667 FWDYZZZ 188

2NM6 FXZBZZZ FXBZZZZ 703 FXBZYZB 80 FXCZZYZ 51

2MN6 FYZAZZZ FYBYZZZ 181 FYZAYZB 109 FYBAZZZ 23

M6 FZZZZZZ FZZZYZB 108 FZXBZZZ 98 FZBZZZZ 33 FZBZAZZ 7

MSN6 FAXAZZZ FAZAZZZ 326 FABYZZZ 63 FAWAZAZ 49 FAZYZZZ 30 FAZYYZZ 3

2MS6 FBXZZZZ FBZZZZZ 277 FBZZAZZ 83 FBXZYZB 72 FBWZZAZ 52 FBBZZZZ 4

2SN6 FCVAZZB FCXAZZZ 838 FCXYZZB 527 FCZYZZB 162 FCZYAZB 68 FCWYZAB 14

2SM6 FDVZZZZ FDXZZZZ 549 FDXZAZZ 166 FDUZZAZ 113 FDZZZZZ 85 FDZZAZZ 52

2(MS)N6 FEVYZZB FEXYZZZ 667 FEUYZAB 167

GVBAZZY GVZCZZY 794 GVDYZZY 176

GWZBZZY GWBZZZY 622 GWZBYZY 76 GWCZZYY 43

3MQ7 GXZAZZY GXBYZZY 173 GXZAYZY 75 GXAAZYY 20

5MK7 GYZZZZY GYXBZZY 272 GYZBZZA 202 GYBZZZA 139 GYZZYZY 72 GYAZZYY 22

GZXAZZY GZZAZZA 641 GZZYZZY 80

GAXZZZY GAZZZZA 591 GAZZYZY 128 GAWZZAY 51 GAZZAZA 45 GABZZZA 42

GBXAZZA GBVAZZY 741 GBZAZZA 436 GBZYZZA 152 GBXYZZA 101 GBZYAZA 18

3SK7 GCXZZZA GCVZZZY 894 GCZZZZA 388 GCZZAZA 162 GCXZAZA 77

GDXYZZA GDZYAZA 737

GEVZZZA GEXZZZA 775 GETZZZY 604

HVBBZZZ

2MNS8 HWBAZZZ

2(MN)8 HXZBZZZ HXBZZZZ 610 HXBZYZB 86

3MN8 HYZAZZZ HYBYZZZ 172 HYZAYZB 142

M8 HZZZZZZ HZXBZZZ 272 HZZZYZB 141 HZBZZZZ 67 HZAZZYZ 22 HZBZAZZ 18

2MSN8 HAXAZZZ HAZAZZZ 314 HAZYZZZ 80 HABYZZZ 59

3MS8 HBXZZZZ HBZZZZZ 290 HBXZYZB 108 HBZZAZZ 86 HBWZZAZ 51 HBVBZZZ 43

2SMN8 HCVAZZZ HCXAZZZ 667 HCXYZZB 142 HCZYZZZ 96

2(MS)8 HDVZZZZ HDXZZZZ 551 HDXZAZZ 167 HDZZZZZ 86 HDUZZAZ 59

3M2SN8 HEXYZZZ

3SM8 HFTZZZZ HFVZZZZ 272 HFVZAZZ 80 HFTZYZB 38

JVBBZZZ

5MNS10 JWBAZZZ

3M2N10 JXZBZZZ JXBZZZZ 531 JXZBYZB 177

4MN10 JYZAZZZ JYBYZZZ 169

M10 JZZZZZZ JZZZYZB 174 JZBZZZZ 110 JZAZZYZ 31 JZBZAZZ 29 JZXZZZB 7

3MSN10 JAXAZZZ JAZAZZZ 319 JAZYZZB 106 JABYZZZ 60

4MS10 JBXZZZZ JBZZZZZ 311 JBXZYZB 142 JBVBZZZ 136 JBZZYZB 47 JBBZZZZ 14

2(MS)N10 JCVAZZZ JCXAZZZ 624 JCZYZZZ 88 JCXYZZB 36

3M2S10 JDVZZZZ JDXZZZZ 560 JDXZAZZ 169 JDZZZZZ 90

JEVAZZZ JETAZZZ 964 JEVYZZB 326 JEXYZZZ 94

3S2M10 JFTZZZZ JFVZZZZ 830 JFVZAZZ 250 JFTZYZB 67
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LVBBZZZ LVDZZZZ 323

4MNS12 LWBAZZZ LWDYZZZ 149

4M2N12 LXZBZZZ LXBZZZZ 493 LXZBYZX 208 LXBZYZX 97 LXCZZYZ 40

5MN12 LYZAZZZ LYXCZZZ 293 LYZAYZX 209 LYBYZZZ 159 LYAAZYZ 40 LYBYYZX 34

M12 LZZZZZZ LZXBZZZ 857 LZZZYZX 204 LZBZZZZ 166 LZZBAZZ 91 LZBZAZZ 46

4MSN12 LAXAZZB LAZAZZZ 336 LAZYZZB 115 LAZAAZZ 101 LABYZZZ 59 LAWAZAZ 46

5MS12 LBXZZZZ LBZZZZZ 344 LBVBZZZ 302 LBXZYZX 177 LBZZAZZ 103 LBZZYZX 64

3M2SN12 LCVAZZZ LCXAZZZ 609 LCZYZZZ 87 LCZYAZZ 28

4M2S12 LDVZZZZ LDXZZZZ 575 LDXZAZZ 174 LDVZYZX 142 LDUZZAZ 109 LDZZZZZ 100

6.2 • Observation period: a year

Niv Moy ZZZZZZZ

Sa ZZAZZZY

Ssa ZZBZZZZ ZZBZAZB 25

Sta ZZCZZYY

MSm ZAXAZZZ ZAXAYZB 76 ZAXAAZB 63

Mm ZAZYZZZ ZAZYAZB 65 ZAZAZZB 53 ZAZAAZB 22

ZABYZZB

Msf ZBXZZZZ

Mf ZBZZZZZ ZBZZAZZ 414 ZBZXZZZ 43 ZBZZBZZ 38

MStm ZCXAZZZ ZCXAAZZ 393

Mfm ZCZYZZZ ZCZYAZZ 416 ZCZYBZZ 40

MSqm ZDXZZZZ ZDXZAZZ 417

AVZCZZY

AVBAZZY AVBAYZY 179

AVDYZZY

2Q1 AWZBZZY AWZBYZY 189

SIGMA1 AWBZZZY AWBZYZY 191

AWCZZYY

AWDZZZY

AXXAZZY

Q1 AXZAZZY AXZAYZY 188

RH01 AXBYZZY AXBYYZY 190 AXBAZZA 58 AXAAZYY 51

AXCYZYY

AXDYZZY

AYXBZZA

AYYZZAA

01 AYZZZZY AYZZYZY 189 AYZBZZA 6 AYZZXZA 6

AYAZZYY

MP1 AYBZZZA AYBZAZY 224

AYCZZZY

AZXAZZA AZXAYZA 214

M1 AZZAZZA AZZYZZA 361 AZZAAZA 199 AZZYYZA 68 AZZAYZY 37

AZBYZZA AZBYAZA 228

391



E. Fourier transforms and series

PI1 AAWZZAY

P1 AAXZZZY AAXZYZA 11

S1 AAYZZZA

K1 AAZZZZA AAZZAZA 136 AAZZYZY 20 AAZZBZY 3

PSI1 AAAZZYA

PHI1 AABZZZA

THETA1 ABXAZZA ABXAAZA 193

J1 ABZYZZA ABZYAZA 199 ABZYYZY 30

ACWZZZA

SO1 ACXZZZA ACXZAZA 204

OO1 ACZZZZA ACZZAZA 636 ACZXZZA 148 ACZZBZA 136

ADXYZZA ADXAZZA 750

KQ1 ADZYZZA

2MN2S2 BUDAZZZ

2NS2 BVBBZZZ BVBZZZZ 545

3M2S2 BVDZZZZ

OQ2 BWZAZZZ BWZCZZZ 722 BWZAYZZ 250

MNS2 BWBAZZZ BWBAYZZ 134

BWCAZYZ

MNUS2 BWDYZZZ

2MS2K2 BXXZZZZ

2N2 BXZBZZZ BXZZZZZ 283 BXZBYZB 39

MU2 2MS2 BXBZZZZ BXBZYZB 36

BXCZZYZ

BYXCZZB

BYYAZAB BYZYXZB 467

N2 BYZAZZZ BYZAYZB 37

BYAAZYZ BYBYYZB 750 BYAZZZB 625

NU2 BYBYZZZ

BYCYZYZ

2KN2S2 BYDAZZZ

MSK2 BZXZZZZ BZXBZZB 818

M(SK)2 BZYZZAB

M2 BZZZZZZ BZZZYZB 37

M(KS)2 BZAZZYZ

MKS2 BZBZZZZ

2SM2K2 BZDZZZZ

LAMBDA2 BAXAZZB

2SN(MK)2 BAVAZZZ

L2 2MN2 BAZYZZB BAZAZZZ 250 BAZAAZZ 109 BAZYYZZ 35

BABYZZZ

2SK2 BBVZZZZ

T2 BBWZZAZ

S2 BBXZZZZ BBXZAZZ 7 BBXZYZZ 2

R2 BBYZZYB
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K2 BBZZZZZ BBZZAZZ 298 BBZZBZZ 32 BBZZYZB 13

BBAZZYZ

BBBZZZZ

MSnu2 BCVAZZZ

MSN2 BCXYZZZ BCXAZZZ 104

KJ2 BCZYZZZ BCZYAZZ 438

2KM(SN)2 BCBYZZZ

BDUZZZA

2SM2 BDVZZZZ

BDWZZZA

SKM2 BDXZZZZ BDXZAZZ 304 BDXXZZZ 122

BDZZZZZ BDZZAZZ 690 BDZZBZZ 276

2SNU2 BETAZZZ

2SN2 BEVYZZZ

SKN2 BEXYZZZ

3S2M2 BFTZZZZ

3SK2M2 BFVZZZZ

CVZCZZY

CVBAZZY

CWZBZZY CWZBYZY 147

CWBZZZY

MQ3 CXZAZZY CXZAYZY 149

CXBYZZY

CYXBZZY

2MK3 CYZZZZY CYZZYZY 149 CYZBZZA 51 CYZAZZB 18

2MS3 CYAZZZB

2MP3 CYBZZZA

CZXAZZA

M3 CZZZZZZ CZZZYZB 56

CZBYZZZ

CAWZZAY

SO3 CAXZZZY

MS3 CAYZZZB

MK3 CAZZZZA CAZZAZA 119 CAZZYZY 81

CAAZZYA

CABZZZA

CBXAZZA CBXYZZA 645

2MQ3 CBZYZZA CBZAZZA 636 CBZZZZB 394 CBZAAZA 364

SP3 CCVZZZZ

S3 CCWZZZB

SK3 CCXZZZA CCXZAZA 121

K3 CCZZZZA CCZZAZA 452

CDXYZZA

CDZYZZA CDZYAZA 550

2SO3 CEVZZZA
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DVBBZZZ

4M2S4 DVDZZZZ

DWZCZZZ

2MNS4 DWBAZZZ

2MnuS4 DWDYZZZ

N4 DXZBZZZ

3MS4 DXBZZZZ

MN4 DYZAZZZ DYZAYZB 73

Mnu4 DYBYZZZ

DZXBZZZ

MA4 DZYZZZZ

M4 DZZZZZZ DZZZYZB 74

2MRS4 DZAZZYZ

2MKS4 DZBZZZZ

SN4 DAXAZZZ

NK4 DAZAZZZ DAZYZZB 361 DAZAAZZ 328

MT4 DBWZZAZ

MS4 DBXZZZZ DBXZYZB 34

MK4 DBZZZZZ DBZZAZZ 295 DBZZYZB 48

2SNM4 DCVAZZB

2MSN4 DCXYZZB

2MKN4 DCZYZZB

ST4 DDUZZAZ

S4 DDVZZZZ

SK4 DDXZZZZ DDXZAZZ 299

DDZZZZZ DDZZAZZ 650

EVZCZZY

EVBAZZY

EWZBZZY EWZBYZY 117

EWBZZZY

2MQ5 EXZAZZY EXZAYZY 114

EXBYZZY

EYXBZZY

4MK5 EYZZZZY EYZBZZA 123 EYZZYZY 110

EYAZZYY

4MP5 EYBZZZA

EZXAZZY

EZZAZZA

EAWZZAY

2MP5 EAXZZZY

2MK5 EAZZZZA EAZZYZY 146 EAZZAZA 99

EAAZZYA

EABZZZA

EBVAZZY
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EBXAZZA EBXYZZA 213

EBZAZZA EBZAAZA 477 EBZYZZA 442

ECVZZZY

2SK5 ECXZZZA ECXZAZA 98

ECZZZZA ECZZAZA 435

EDXYZZA

EDZYZZA EDZYAZA 571

EETZZZY

EEVZZZA

EEXZZZA

2(MN)K6 FVZBZZZ

2(MN)S6 FVBBZZZ

FVDZZZZ

FWZCZZZ

3MNS6 FWBAZZZ

3MnuS6 FWDYZZZ

2NM6 FXZBZZZ

4MS6 FXBZZZZ FXBZYZB 113

FXCZZYZ

2MSNK6 FYXAZZA

2MN6 FYZAZZZ FYZAYZB 109

2Mnu6 FYBYZZZ FYBAZZZ 128

FZXBZZZ

MA6 FZYZZZZ

M6 FZZZZZZ FZZZYZB 108

3MKS6 FZBZZZZ FZBZAZZ 200

MTN6 FAWAZAZ

MSN6 FAXAZZZ

MNK6 FAZAZZZ FAZYZZZ 92 FAZYYZZ 8

MKnu6 FABYZZZ

FBVBZZB

2MT6 FBWZZAZ

2MS6 FBXZZZZ FBXZYZB 72

2MK6 FBZZZZZ FBZZAZZ 300

FBBZZZZ

2SN6 FCVAZZB

3MTN6 FCWYZAB

SNK6 FCXAZZZ FCXYZZB 629

3MKN6 FCZYZZB FCZYAZB 417

MST6 FDUZZAZ

2SM6 FDVZZZZ

FDWZZZA

MSK6 FDXZZZZ FDXZAZZ 302

FDZZZZZ FDZZAZZ 615

2MSTN6 FEUYZAB
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2(MS)N6 FEVYZZB

2MSKN6 FEXYZZZ

GVZCZZY

GVBAZZY

GVDYZZY

GWZBZZY GWZBYZY 76

GWBZZZY

GWCZZYY

3MQ7 GXZAZZY GXZAYZY 75

GXAAZYY

GXBYZZY

GYXBZZY

5MK7 GYZZZZY GYZBZZA 202 GYZZYZY 72

GYAZZYY

GYBZZZA

GZXAZZY

GZZAZZA GZZYZZY 125

GAWZZAY

GAXZZZY

3MS7 GAYZZZB

3MK7 GAZZZZA GAZZYZY 217 GAZZAZA 76

GAAZZYA

GABZZZA

GBVAZZY

GBXAZZA GBXYZZA 101

GBZAZZA GBZYZZA 350 GBZYAZA 42

GCVZZZY

3SK7 GCXZZZA GCXZAZA 77

GCZZZZA GCZZAZA 418

GDXYZZA

GDZYAZA

GETZZZY

GEVZZZA

GEXZZZA

HVBBZZZ

2MNS8 HWBAZZZ

5MK8 HXZZZZZ

HXBZYZB

2(MN)8 HXZBZZZ

5MS8 HXBZZZZ

3MSNK8 HYXAZZB

3MN8 HYZAZZZ HYZAYZB 142

3Mnu8 HYBYZZZ

HZXBZZZ
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M8 HZZZZZZ HZZZYZB 141

HZAZZYZ

4MKS8 HZBZZZZ HZBZAZZ 262

2MSN8 HAXAZZZ

2MNK8 HAZAZZZ HAZYZZZ 256

HABYZZZ

HBVBZZZ

3MT8 HBWZZAZ

3MS8 HBXZZZZ HBXZYZB 108

3MK8 HBZZZZZ HBZZAZZ 297 HBZZYZB 121

HBBZZZZ

2SMN8 HCVAZZZ

HCXAZZZ HCXYZZB 213

4MSN8 HCZYZZZ

2MST8 HDUZZAZ

2(MS)8 HDVZZZZ

2MSK8 HDXZZZZ HDXZAZZ 303

HDZZZZZ

3SN8 HETAZZZ

HEVAZZZ

3M2SN8 HEXYZZZ

3SM8 HFTZZZZ HFTZYZB 38

2SMK8 HFVZZZZ HFVZAZZ 296

JVBBZZZ

5MNS10 JWBAZZZ

3M2N10 JXZBZZZ JXZBYZB 177

6MS10 JXBZZZZ

4MN10 JYZAZZZ

4Mnu10 JYBYZZZ

5MSK10 JZXZZZB

M10 JZZZZZZ JZZZYZB 174

JZAZZYZ

JZBZZZZ JZBZAZZ 262

3MSN10 JAXAZZZ

3MNK10 JAZAZZZ JAZYZZB 332

JABYZZZ

JBVBZZZ

4MS10 JBXZZZZ JBXZYZB 142

4MK10 JBZZZZZ JBZZYZB 151

JBBZZZZ

2(MS)N10 JCVAZZZ

JCXAZZZ JCXYZZB 57

5MSN10 JCZYZZZ

3M2S10 JDVZZZZ

3MSK10 JDXZZZZ JDXZAZZ 302
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JDZZZZZ

3SMN10 JETAZZZ

JEVAZZZ JEVYZZB 326

4M2SN10 JEXYZZZ

3S2M10 JFTZZZZ JFTZYZB 67

2(MS)K10 JFVZZZZ JFVZAZZ 301

LVBBZZZ

LVDZZZZ

LWZCZZZ

4MNS12 LWBAZZZ

LWDYZZZ

4M2N12 LXZBZZZ LXZBYZX 208

4M2N12 LXBZZZZ LXBZYZX 197

LXCZZYZ

LYXCZZZ

5MN12 LYZAZZZ LYZAYZX 209

LYAAZYZ LYBYYZX 857

5Mnu12 LYBYZZZ

LZXBZZZ

M12 LZZZZZZ LZZZYZX 204 LZZBAZZ 91 LZZZXZZ 17

LZAZZYZ

LZBZZZZ LZBZAZZ 279

LAWAZAZ

4MSN12 LAXAZZB

LAYYZAZ

4MNK12 LAZAZZZ LAZYZZB 342 LAZAAZZ 302 LAZYYZX 50

LABYZZZ

LBVBZZZ

5MT12 LBWZZAZ

5MS12 LBXZZZZ LBXZYZX 177

5MK12 LBZZZZZ LBZZAZZ 300 LBZZYZX 186 LBZZBZZ 36

LBAZZYZ

LBBZZZZ

3M2SN12 LCVAZZZ

LCXAZZZ LCXYZZZ 46

5MSN12 LCZYZZZ LCZYAZZ 323

LDTBZZZ

4MST12 LDUZZAZ

4M2S12 LDVZZZZ LDVZYZX 142

4MSK12 LDXZZZZ LDXZAZZ 303 LDXZYZX 158 LDXZBZZ 31

LDYZZYZ

LDZZZZZ

3(MS)12 LFTZZZZ LFTZYZX 105
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Glossary

A  : inertial reference frame (without acceler-
ation)

A: frequency-dependent response of the ocean to the tide-
generating force.

A   : time lag of the highest spring tides after syzygy.
A: sea level measurement using spatial techniques.
A : point located offshore around which the tidal wave

seems to gyrate.
A: difference between the high water height (HWH) or low

water height (LWH) and the mean level. This term is often wrongly used
in reference to tidal range.

A : point at which the Moon’s orbit intersects the ecliptic
at the time when the Moon crosses the equatorial plane from the south into
the Northern Hemisphere.

C : synonym for hydrographic datum.
C : mean time advanced by 12 h.
C : resultant of the slope current and drift current

close to the coast.
C  : strengthening coastal current in near

geostrophic balance with the sea-level slope generated by the wind, exclusive
of the tide current.

C; S : tidal analysis and prediction
technique that focuses on relations between reduced vectors from a reference
port and a secondary port.
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C : curve on a chart passing through all points having the
same high water time.

C : maximum current velocity intensity during a tidal
cycle.

C : cartographic representation of tidal current fields at
different hours.

D: angle between the position of a celestial body and the
equatorial plane.

D : method for determining tidal constituents using a
six-digit number to identify the astronomical parameters from which they
are derived and to deduce their period.

D : wind-generated current.
E: period during which the water level decreases.
E ,  : current that accompanies a falling tide.
E: Earth’s orbit around the Sun, or the apparent orbit of the Sun as

viewed from Earth.
E : angle between the position of a celestial body and

the ecliptic plane.
E : angle between the orthogonal projection on the

ecliptic of the celestial body position and the vernal equinox position.
E: in geodesy, a mathematical figure formed according to the

relative positions of points located on the Earth’s surface.
E  : difference between the mean and actual solar time.
E: great circle on the Earth’s surface that is perpendicular to the

polar axis.
E : point where the ecliptic plane intersects the equator.
E  : maximum amplitude of a semidiurnal tide

that occurs around equinox.
E   : actual time of high water of spring tide

that occurs after the actual midday at the site, considered as the reference
time, on days of the new and full moon.

E  : semidiurnal equinoctial spring tide at
perigee.

E D : Doodson number to which a seventh
digit has been added to determine whether the angular argument is associ-
ated with a positive or negative sine or cosine.

FFT: Fast Fourier transform. A technique used to represent a temporal
signal in the spectral domain.
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F : representation system in which celestial bodies are located
by their position on a fixed sphere relative to stars.

F ,  : current that accompanies a rising tide.
F : time between the low water level and the following high

water level.
G  : angular distance between the Earth’s

radius at a site (zenith direction or ascending vertical) and the direction of
the celestial body with respect to the Earth’s mass centre.

G : latitude-dependent element of the tide-
generating potential.

G : latitudinal and longitudinal quantities
defining a point on the surface of the Earth.

G: equipotential surface of terrestrial gravity.
G: division of an area into single geometric elements for mathematical

modelling purposes, e.g. 2D or 3D grid.
H : calculation of harmonic tidal constants.
H : the amplitude and situation of a harmonic con-

stituent are harmonic constants of this constituent.
H : elementary tidal wave, defined by its fre-

quency, amplitude and phase.
H    : tidal curve extremes (maxima and

minima).
H  : tidal curve maxima.
H   : spring tide maxima.
H : angle, expressed in hours and measured westward, of the

meridian half-plane of a celestial body with respect to that of the site.
H : also called chart datum, a standard reference

provided on marine maps and tide tables used by navigators.
I T R S (ITRS): geodesic sys-

tem of coordinates.
I : harmonic constituent generated by nonlin-

ear effects of the ocean’s response to the tide-generating force.
I : coastal zone that lies between the highest high tide

level and the lowest low water height.
K : safety margin that accounts for random water level

variations.
L: period during which the tidal amplitude declines.
L: angle between the vertical of the site and the equatorial plane.
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L  : calculation technique to obtain an optimal
estimate of a deterministic signal in the presence of noise.

L : orthogonal polynomials. The tide-generating
potential is expressed as a series of Legendre polynomials.

L : usually a metallic graduated band equipped with a device
that emits a light signal when its tip comes in contact with the water surface.

L : Doodson number in which figures are replaced by
letters.

L  : or LAT, the hour angle of the true Sun.

L: angle between the meridian half-plane of a site and the
prime meridian (Greenwich meridian).

L  : minimum water height reached during a tidal cycle.

L  : minimum tidal range.

L : time interval between two full moons and two new
moons, also called synodical month.

L : potential from which the sum of the lunar and
solar tide-generating forces is derived.

M : angle, measured counter-clockwise in the ecliptic,
between the mean Sun position with respect to the perihelion.

M : mean lag from high water time relative to the
time of the Moon’s crossing of the meridian; also called the lunitidal interval.

M : result of digital filtering of observed water heights which
tends to eliminate sinusoidal components.

M : ecliptic longitude of a celestial body. This is a time-
honoured yet unsuitable term (i.e. it does not represent the mean longitude).

M  : ocean area determined by spatial altimetry.

M  : uniform time scale defined by the mean Sun. By
definition, a mean solar day is 24 h.

M : imaginary celestial body having the same apparent revolution
period as the real sun, but whose movement is uniform. The mean time
ranges from 0 to 24 h from the passage of the mean Sun across the superior
meridian.

M  : arithmetic mean of mean high water and mean low
water.

M : plane that includes the polar axis.

N: a point in the vertical downward direction; directly opposite the
zenith.
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N : correction applied to harmonic constants to
account for variations in lunar orbit elements.

N: an observed magnitude component that cannot be measured by
harmonic analysis.

P: closest point of an orbit to a focus.
P  : maximum tidal amplitude that occurs around

the time of lunar perigee.
P : measured as the angle between the constituent maximum of

the constituent and the maximum action of the element corresponding to
the tide-generating potential. This concept was generalized for interaction
constituents.

P : rotational axis of the Earth.
P : complementary angle of the declination.
P  : period during which the tidal amplitude increases

between neap and spring tides.
P’ : geometrical model for the tide-generating force.
Q: position of the Moon and Sun when their positions rela-

tive to the Earth form a right angle (general term for first quarter and last
quarter).

R : element derived from the radiational
effects of the Sun, contrary to gravitational constituents.

R : periodic magnitudes resulting from an interpolation
of observed heights for the calculation of reduced vectors.

R : complex number representative of species elements
(module and phase) at a given time.

R : tidal analysis and prediction technique based on the
system’s admittances.

R : angle between the meridian plane of the celestial
body and the vernal equinox, measured eastward with respect to the vernal
equinox.

R  : quick method for calculating a current on the basis of its
amplitude maxima time.

S: a period of 6 585.322 days, corresponding to 223 lunations. At the
end of this period, the Moon, Sun, lunar orbit node and lunar perigee are
roughly in the same relative position.

S : time interval between two successive transits of the vernal
equinox during a terrestrial rotation; the right ascension of the Greenwich
zenith.
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S : time necessary for the mean longitude of the Moon,
measured from a fixed equinox, to increase by 360°. Equal to 27 days 7 h 43
min.

S : time at low or high water height when the water level is
essentially stationary; this is called low-tide slack water and high-tide slack
water.

S : time interval between two successive upper transits of the
Sun’s centre.

S: maxima declinations of celestial bodies.

S: term coined by Laplace in reference to a set of constituents
whose frequencies are close to a full number (including zero) of cycles per
lunar day. The principal species are long-period, diurnal, semidiurnal, etc.

S : energy (or amplitude) distribution of a time vari-
able signal on a frequency scale (or domain).

S: graphic representation of spectral component modules.

S : tidal observatory device designed to dampen the water
column and rapid movements caused by waves and swell.

S : time between two full Moons and two new Moons,
also called lunar month.

S: moment when the meridian planes of the Moon and Sun are
lined up. This corresponds with the full Moon and new Moon.

T : collapsing wave accompanying a tidal flow that propagates
up some estuaries.

T : measurement of the tidal amplitude in reference to
the height unit.

T : horizontal component of a tidal wave induced by gravi-
tational interactions between the Sun and Moon.

T : falling (or ebbing) part of the tidal cycle.

T  : half range of mean spring tide at equinox (semidiur-
nal tide) or solstice (diurnal tide).

T : tide-monitoring site that it is equipped with a tide
gauge to record water heights, a tidal scale and benchmarks located within
the vicinity.

T : difference in water height between successive low and high
water heights.

T : rising (or flowing) part of the tidal cycle.

T : a board with linear.
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T: periodic rise and fall of sea water levels due to the gravitational
effects of the Sun and Moon.

T : graphical representation of the tide-gauge record at a given
site, or the tide prediction computed from site harmonic constants.

T : graphic record of sea water level variations at a given site
over a time course.

T : device used to record the vertical rise and fall of sea
water levels; also called a sea-level recorder.

T- : resultant of the gravitational attraction
exerted by celestial bodies at a point on Earth and that which would be
exerted at the centre of the Earth.

T- : scalar quantity from which the tide-
generating force is derived.

T : time interval between two consecutive passages of the
Sun at the vernal equinox.

T : angle, measured counter-clockwise in the ecliptic,
between the real Sun position with respect to the perihelion.

T  :
• diurnal tide: only one high and one low water height each day; the

semidiurnal constituents are insignificant.
• mixed semidiurnal tide: two daily high and low water heights; the

semidiurnal constituents are dominant.
• mixed tide: sometimes two daily high and low water heights, sometimes

just one; the diurnal constituents are dominant.
• semidiurnal tide: two daily high and low water heights; the diurnal

constituents are insignificant.
U : or UT, is same as the Greenwich mean time.
V : spring equinoctial point.
V: a plumb line. It is assumed (with an acceptable degree of

leeway for tidal issues) that the vertical crosses the polar axis at the centre
of the Earth.

W : tidal wave propagation velocity.
Z: a point in the vertical upward direction; directly opposite the

nadir).
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