

UTHE SATELLITE DERIVED CHART

(1983 – 2012)

(^{OB} 1/43

SDC - The Satellite Derived Chart (1983 – 2012)

HSSC 4 – 26/09/12

Part 1 Revolution in Marine cartography: The impact of satellite

SDC/SHOM Timeline (an old story...)

1983	: Spot SDB simulation with a CASI radiometer in New Caledonia
1986	: First SPOT SDB test in the Uvea lagoon
1987	: First presentation of the SDC concept at the 13th IHC
1995	: First SDC publication in the French chart series
2004	: Evaluation of the ESA radar capacity (Coastchart project)
2006	: Termination of the Coastchart Project
2011	: Implementation of a S-57 catalogue of satellite derived objects
2012	: - 100th SDC publication in the French chart series
	- Reassessment of radar capacity (TerraSAR-X) in West Africa

Oct 2011 : 1st SDB Seminar at UKHO Mar 2012 : SHOM/UKHO/CSIRO discussions in Taunton Sep 2012 : HSSC 4

As of today, SHOM has produced over 100 SDCs ("Spatiocartes") supported by satellite field surveys, and conducted about 250 kinds of expertise to meet User's requirements...

SDC - The Satellite Derived Chart (1983 – 2012)

4/43

...covering a wide range of uses such as the Standard Product, a quality controlled SDC,

Tahanea atoll's GIS vector layer

...QC Chart updating,

50 years after the last survey, the new chart of Toamasina, Madagascar, will be rendered in WGS 84 and all discrepancies corrected

... Products of the Future: the S-100 digital SDC,

SDC - The Satellite Derived Chart (1983 – 2012)

SH

Part 2 The seven steps of Quality Controlled Satellite Derived Bathymetry (SDB)

Step 1: Image selection

Panchromatic for high topographic definition

Blue, green & red channels for bathymetry and bottom structure

Step 2: Ground control

Step 3: Orthorectification

Errors of unrectified images can be up to several km

Step 4: Destriping & Enhancement

12 runs of home-made software to enhance bottom structures)

bottom structures)

Image PCA

HSSC 4 - 26/09/12

Careful destriping to avoid suppressing relevant details

Step 5: Determination of vector masks

Land, Dries and Cloud masks are performed under hydrographic surveyor supervision (not fully automatic) and then automatically vectorised

Step 6: Capture of objects

The cartographer uses automated and/or manual data capture methods, whichever are the fastest

Step 7: Bathymetric modelling

Raw Satellite Derived Model

The A, B & C Lyzenga coefficients are determined by comparison with tide corrected, well distributed, control survey lines, then extrapolated to the entire model .

SDC - The Satellite Derived Chart (1983 – 2012)

18/43

Part 3 SDB performances

Early tests (Uvea, New Caledonia – 1987)

Lyzenga model performances against IHO S-44 as observed on 99 SDCs

Performance Feedback

(Facts of life as opposed to Labs' claims)

Horizontal precision:

- 10 m average, in the case of spatiotriangulated contiguous blocks without GPS control points
- -10 m average, in the case of an orthorectified image with GPS control points
- 2 m locally, with HR images and dense network of control points

Vertical precision:

(with properly calibrated Lyzenga model)

- Up to 30% uncertainty in the [0-5 m] layer
- 10% average uncertainty in the [5-20 m] layer

Bottom investigation remains incomplete:

 Features not always detected and/or difficult to determine (bottom roughness badly replicated by the model)

Depth of penetration: 20 m on average, exceptionally 30 m

Difficult or impossible to detect and measure 2m objects at 40 m depth (S-44 order 1a)

Processing time:

Manual checks of automated processes and data validation are painstaking and still require hydrographic surveyor supervision.

Ground control (Control points & Control survey lines):

> Indispensable and relatively costly.

Statement of facts

- SDC is a standard product, catalogued in the French chart series since 1995.
- > SDB is a well-proven process that must be refined continuously.
- SDC production is routine and accessible to all. (the SHOM Lyzenga-based ENVI software has actually been commercialised to EXELIS Inc.)
- Nonetheless, final SDC production must be supervised by qualified hydrographers who are aware of the limits of the method.
- The obligation of Quality Control, a consequence of HOs' liability, remains a costly commitment.

SHOM Way ahead

- Test Inversion methods, in production, against Lyzenga's (ongoing). Benchmarking and implementation if proven better.
- Test & implement new captors and processes (ongoing).
- Keep track of latest developments in France and abroad (permanent).
- Develop S-100 satellite objects in support of ENCs (continued).
- Develop new S-44 standard in liaison with IHO in order to cater for SDB.
- List User's requirements against costs & performances and consolidate product line.
- ≻ Etc.

The physics-based Inversion Method may work without in-situ data

- Also can cope better with variation in water constituents
- Is based on physical geometry and radiative transfer theory
- Other unknowns are estimated in the process

A set of equations predict what the sensor receives – they are 'inverted' to estimate depth from sensor data:

$$\begin{array}{ll} \overbrace{r_{\rm rs}(\lambda)}^{\rm rs} \approx & r_{\rm rs}^{\rm dp}(\lambda) \left(1 - \exp\left\{-\left[\frac{1}{\cos\theta_{\rm w}} + \frac{D_{\rm u}^{\rm C}(\lambda)}{\cos\theta}\right]\kappa(\lambda)H\right\}\right) \\ & + & \frac{1}{\pi}\rho(\lambda) \exp\left\{-\left[\frac{1}{\cos\theta_{\rm w}} + \frac{D_{\rm u}^{\rm B}(\lambda)}{\cos\theta}\right]\kappa(\lambda)H\right\} \end{array} \\ \hline \\ \begin{array}{l} {\rm Sensor} \\ {\rm receives this} \end{array} \end{array}$$

depth in metres

26/43

By courtesy of ARGANS Ltd.

SDC - The Satellite Derived Chart (1983 – 2012)

HSSC 4 – 26/09/12

Uncertainty as error bars at every point in an image

Bathymetry from images without in-situ surveys

Example:

Heron reef, Australia

1 m spatial resolution bathymetric map from hyperspectral data

11 km, image total is \approx 50 million pixels

28/43

Published: Hedley et al. 2009, *Remote Sensing of Environment* 113, 2527-2532 **Dataset available:** Hedley et al. 2012, *Pangaea*, doi:10.1594/PANGAEA.779522

Test & implementation of radar satellites

SPOT SHOM's coastline SHOM's sandy and muddy intertid 2.5 m SHOM's wharf Coastchart's coastline From the 2004 - 2006 aborted Coastchart project... EnvisatASAR 132 m 30 m SPOT TerraSAR-X 2.5 m 2.5 m ...to the 2012 precision 15 <u>S</u>F HSSC 4 – 26/09/12

Development of a catalogue of S-100 satellite objects in support of ENC production

	Géométries					1				
vecteurs issus de la teledetection satellitaire	(Point, Line, Area	i) acronyme	acronyme attribut 1 attri		ibut 2 attribut 3		1			
appontement, jetée / pier, jetty	L, A	SLCONS	CATSLC 4	INFO	RM	NOBJNM			t of 1	סדדת
barrage / dam	L, A	DAMCON	CATDAM 2	INFO	RM	NOBJNM		Excert	ιοι	20112
base navale (militaire) / naval base	P, A	HRBFAC	CATHAF 6	INFO	RM	NOBJNM		I		
bassin de radoub (cale sèche) / graving dock (dry dock)	А	DRYDOC	INFORM	NOB	JNM	OBJNAM		(tha CL	JOM	
bâtiment remarquable (hangar, entrepôt,) / conspicuous building		BUISGI	conveh 5	INFO	PM					
(warehouse, storehouse,)		DOIOGE	convari o			NODJINI			• •	•
brise-lames / breakwater	L, A	SLCONS	CATSLC 1	INFO	RM	NOBJNM		image	' dat	ahace)
brise-mer / seawall	L, A	SLCONS	CATSLC 10	INFO	RM	NOBJNM		mague	o uai	abase
cale de construction / slipway	L, A	SLCONS	CATSLC 13	INFO	RM	NOBJNM		•		
cale, cale de halage / ramp	L, A	SLCONS	CATSLC 12	INFO	RM	NOBJNM				
canal (de navigation) / canal, slough	L, A trait o	le côte / coastline			L	со	ALNE	INFORM	NOBJNM	OBJNAM
canal de drainage des eaux excédentaires / anal to pin kcess	I A tranc	he bathymétrique [Zm	nin-Zmax] m (modèle calculé)	/ [Zmin-	٨	DE	DADE	DDVAL1 7min	DRVAL2 Zmax	INFORM
water from surrounding land	E, A Zmax	Zmax] meters depth area						DRVALTZIIIII	DRVALZ ZINAX	
canal d'irrigation / flume	L, A tranc	he bathymétrique 0-5	m (modèle calculé) / 0-5 mete	rs depth	А	DE	PARE	DRVAL1 0	DRVAL2 5	INFORM
chantier naval / shipyard	P, A area	he hathymétrique 5-1	0 m (modèle calculé) / 5-10 m	ators donth						
château d'eau / water tower	P, A area	area DEPARE DRVAL1 5 DRVAL2 10 INFC						INFORM		
construction isolée / single building	P, A tranc	tranche bathymétrique 10-15 m (modèle calculé) / 10-15 meters					DRVAL2 15	INFORM		
désert rocheux (rocai dux procky desert (stony desert)	A depth	depth area								
désert sableux / sandyert	A tranc	tranche bathymétrique 15-20 m (modèle calculé) / 15-20 meters A DEPARE DRVAL1 15 DRVAL2 20 INFOF					INFORM			
digue / dyke	L, A tranc	he bathymétrique 20-	25 m (modèle calculé) / 20-25	meters				D DIVALA DO	001/0/005	INFORM
dock flottar / floateg dock	L, A _{depth}	area			А	DE	PARE	DRVAL1 20	DRVAL2 25	INFORM
duc d'albe / Uphin	L, A voie f	errée / railway			L		ILWY	INFORM	NOBJNM	OBJNAM
émissaire, égour 7 outfall pipe, discharge pipe, sewer	L zone	arboree (bois, foret, b	osquet) / woodland, woods			VE PU	GAIN	CATVEG 6		
épave / wreck	A	de bathymétrie sunér	ieure à 20 m (modèle calculé)	/ deeper			AARE	INFORM	NOBJINIVI	OBJINAIVI
é pi / groyne	L than 2	20 meters depth area	icure a 20 m (modele calcule)	/ deeper		DE	PARE	DRVAL1 20	DRVAL2 50	INFORM
estran (de nature indéfinie) / unknown intertidal area	A zone	de bathymétrie supér	ieure à 25 m (modèle calculé)	/ deep	А	DF	PARF	DRVAL1 25	DRVAL2.50	INFORM
estran corallien (récif corallien couvrant et découvrant)	Δ than 2	25 meters depth area			· · · ·					
coral reef, which covers and uncovers		de bathymétrie doute area (from bathymetric	euse (modèle calculé do trux	/ doubtful	L, A	DE	PARE	DRVAL1 Zmin	DRVAL2 Zmax	QUASOU 3
estran rocheux / rocky intertidal area	Azone	de déferlement (sur u	ine plage, à la côte,) / s	Jin.				0.4714/47.4	INFORM	NODININ
estran sableux et/ou vaseux, banc de sable, banc de vase	۵ break	ers	,	,	А	VVA	TUR	CATWAT 1	INFORM	NOBJNM
sandy and/or muddy intertidal area, sandbank, mudbank	zone	de petits fonds vaseu	IX / muddy allow waters		A	SB	DARE	NATSUR 1	WATLEV 3	INFORM
ferme marine / marine farm L, A		zone de pipelines / pipelines area			A	PIF	PARE	PRODCT	INFORM	NOBJNM
fond corallien (récif corallien immergé) / coral seabed	A	de travaux en cours /	under construct area (works	sin	L, A	SLO	CONS	CONDTN 1	INFORM	NOBJNM
fond rocheux / rocky seabed	A	555)					DOLU	0.171451.0	INFORM	
fond sableux et/ou vaseux / sandy and/or muddy seabed	Azone	d'élevage de coquilla	ges (conchyliculture) / shellfis	h beds	L, A	МА	RCUL	CATMEA 2	INFORM	NOBJNM
gazoduc / overhead pipeline to transport gaz	Lzone	dunaire, dunes / sand	Ihills, dunes		A	SLO	OGRD	CATSLO 3	NATSUR 4	
glacier / glacier	A	industrielle / industrial	ecage,) / wetiands (swamp, r Larea	narsn,)	A			CATERA		
	Zone	masquée (nuage om	bre). télédétection imposs	ible /	A			CATTINA	TRODUT	
	mask	ed area (cloud, shadow	v,), impossible to remote sen	se	A	UN	SARE	INFORM	NOBJNM	OBJNAM
	zone	terrestre / land area			A	LN	DARE	INFORM	NOBJNM	OBJNAM

Part 4 SHOM new line of products

Vector Database (CARIS HPD)

Doralé (Djibouti) oil terminal

SDC - The Satellite Derived Chart (1983 – 2012)

SH

Satellite Derived ENC in the S-10* format

(suited to all GIS and Editors)

Digital Topographic SDC (suited to all GIS and Editors)

Designed to comply with shore requirements

Digital Nautical SDC

(suited to all GIS and Editors)

Designed to comply with Marine requirements

35/43

Seamless Land-Sea SDC

(suited to all GIS and Editors)

Designed to comply with Operational deployments, ICZM requirements, etc.

Part 5 Cost considerations

Surveys, Processing and Charts

(costs based optionally on SHOM Dec 2011 figures)

Ocean-survey vessel: 63 510 € per 24 hrs day (survey team not included)
Coastal-survey ship: 52 241 € per 24 hrs day (survey team not included)
Survey/Post-processing by 16-strong team: about 10 000 € per day
Time ratio Post-processing / Deep sea survey: 3.5 (more if shallow)
Survey of port and access: about 0.5 M€ per port
Chart production costs (2009 figures, without printing):
Publication: 79 500 €
Edition: 46 000 €
ENC: 16 500 € (to be added to the publication cost)

Commercial" geophysical vessel (14 arrays – 57 crew) : US \$ 280 000 per day

Costs of surveys per sq. km

	Litto3D preliminary assessment (2004)	2011
Lidar	1 000 € (French coasts)	Average: 1 500 to 2 000 € Greatly variable. Depends on survey and quality of post- processing
MBES	1 000 to 1 400 €	Average: 1 000 to 1 400 € Up to 10 times these figures in the worst cases
Satellite		25 to 45 € (depends on quality of product)

Satellite images & Processing

(based on SHOM 2011 figures)

✓Cost of satellite images: anything between 0.02 and 40 € per sq. km, depending on quality, amongst other considerations

SATELLITE	Spatial resolution (m)	Cost per sq. km (€)
Quickbird	2.4 x 2.4	22
Pleïades	2.8 x 2.8	5 (SHOM guess)
TerraSar-X Strip Map	1.25 x 1.25	2.64
Spot View	10 x 10	1.07
RapidEye	5 x 5	0.95
DMC	22/32	0.02 to 0.12

✓Cost of image processing (20 x 20 km): 15 000 € without ground control

Ultimately, how should we spend our money?

1 000 to 2 000 € per sq. km for this?

Or $40 \in \text{per sq. km}$ for that?

S۲

BIBLIOGRAPHY

LYZENGA D.R. - 1978 – "Passive remote sensing techniques for mapping water depth and bottom features" (Applied Optics, vol. 17 n°3 : 277-284).

TANIS F.J. - 1982 – "Radiance calculations for optimization of sensors designed for remote bathymetry" (Rapport technique final, Naval Research Laboratory, microfiche AD-A 117 743).

BOURGOIN J. - 1983 – "La télédétection en hydrographie" (Géomètre, n°10 : 42-51).

GUILLAM Y. - 1984 – "Utilisation des données d'une simulation SPOT pour l'étude bathymétrique d'une région corallienne" (Projet de fin d'étude, ENSIETA : 34 P).

JOY RT. - 1984 – "An assessment of the potential role of multispectral imagery in bathymetric charting" (Thèse, Naval postgraduate school, Monterey-California, microfiche AD-A 152 460).

LE GOUIC M. - 1985 – "Etude des applications bathymétriques d'un radiomètre canal bleu embarqué sur satellite, à partir des données d'une simulation aéroportée ; Nouvelle-Calédonie – décembre 1983" (rapport d'étude n°0002/85 EPSHOM : 21 P).

LYZENGA, D.R. – 1985 – "Shallow-water bathymetry using combined lidar and passive multispectral scanner data" (Int. J. Remote Sensing 6, 115-125).

FOURGASSIÉ A. – 1986, 1987 – "Hydrographie et télédétection" (fond documentaire SHOM – T.A.P.86-22 et 87-22).

LE GOUIC M. - 1987 – "Utilisation de SPOT en hydrographie" in "SPOT 1, Utilisation des données, Bilan, Résultats" (CNES Ed. : 1063-1068).

JAMES F., DUBOIS G, GARLAN T. - 1990 – "Rectification géométrique des images SPOT par modélisation de la prise de vue" (fond documentaire SHOM – RE.05/90).

GARLAN T., LE VISAGE C. - 1990 – "The nautical space chart. A solution for unsurveyed coastal regions?" (fond documentaire SHOM – E.7151).

FOURGASSIÉ A. - 1992 – "La spatiocarte marine, une solution pour la cartographie des atolls polynésiens" (fond documentaire SHOM – CN-1990).

BIERWIRTH P.N., Lee T.J., BURNE R.V. - 1993 – "Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery" (Photogrammetric Engineering and Remote Sensing Journal vol. 59:3).

TOURNAY JP - 2001 – "L'apport de la télédétection à la cartographie marine" (la lettre du SHOM 2001).

EVEN M., TOURNAY JP. - 2001 – "Satellite image in south Pacific" (Conférence Hydrographique du Pacifique SW 2001).

LE GOUIC M., EVEN M., TOURNAY JP. - 2004 – "Hydrographic use of satellite imagery in south Pacific" (Hydro-International - juin 2004, vol. 8 n°5).

LYZENGA D.R., MALINAS N.P., TANIS F.J. - 2006 – "Multispectral bathymetry using a simple physically based algorithm" (Geoscience and Remote sensing, IEEE Transactions, vol. 44, issue 8 : 2251-2259).

SHOM/DSPRE/COM - 2007 – "Exemple d'apport des spatiocartes du SHOM au soutien des forces interarmées" (la lettre du SHOM).

MINISTÈRE DE LA DÉFENSE

UTHE SATELLITE DERIVED CHART

(1983 – 2012)

Thank you for your attention. Do you have any questions?

43/43

Addendum:

SHOM vision of the future & Examples of SDC applications

SH

SHOM goals and vision of the future

- Influence the development of SDB technologies with a view to improve the world existing chart series and depict poorly surveyed areas.
- Bridge the gap between R&D and effective production of SDCs, and receive funding for the qualification and benchmarking of valid SDB technologies.
- > Develop a new S-44 standard in liaison with IHO to cater for SDB.
- Expand the Manual on Hydrography (C-13) to address SDB technologies.
- Develop partnership with those HOs that share SHOM concern about the bleak future of some segments of the existing chart series.
- Transpose the SDB technology directly applicable to Capacity Building in developing HOs.

45 / 51

HSSC 4 - 26/09/12

South West Indian Ocean

Myanmar and Thailand ICZM

A tourist heaven, the Mergui archipelago comprises 800 islands and covers a 36 000 sq. km uncharted area and a National Park

With special thanks to Pierre Mouscardes Consulting

Mediterranean

Updating of some Maghreb old charts is considered as a possible component of the future Southern Mediterranean Marine Highway

Silyanah Susah RapidEye • Oairouan Al Qayrawan (Oasravn Sdid Bo Sidi Bu Zayd Kerkennah Islands Oafsah Gulj Gahè Tun Djerba island Kebili Oui Zuwarah An Nugat al Khams 77 km Libya damis Yafran 50 k • Dehibat 0 152 Si 49/51 HSSC 4 - 26/09/12 MINISTÈRE DE LA DÉFENS

Siliana

With special thanks to Pierre Mouscardes Consulting

SDC - The Satellite Derived Chart (1983 – 2012)

HSSC 4 - 26/09/12

50 / 51

THE SATELLITE DERIVED CHART

(1983 – 2012)

Thank you for your attention. Do you have any questions?

