

Selected Stations of the Queensland Network

Tidal Observation Within Queensland Waters is:-

- Undertaken co-operatively by:-
 - The Environmental Protection Agency (EPA):-
 - Twenty two Storm Tide stations, a number of which contribute readings for port operations.
 - Port Authorities:-
 - Three operated in conjunction with the EPA
 - Maritime Safety Queensland:-
 - Six, two operated in conjunction with the EPA
 - National Tidal Centre
 - Two SEAFRAME high precision stations for sea level monitoring

The Equipment Presently Deployed

Typical Radar Sensor Mounting Environmental Protection Agency

C Ferguson Storm Tide Station Environmental Protection Agency

Queensland

Rosslyn Bay SEAFRAME Station National Tidal Centre

Data Validation and Storage.

- Maritime Safety Queensland is custodian of the tidal recordings and predictions for the Queensland State agencies:-
 - Recordings are validated against water level checks, predictions, and non-tidal residuals at adjacent stations.
 - Recordings, predictions, datum information, and other (limited) metadata are held in the TIDES database.

Tidal Predictions

- The Official Standard Port tidal predictions are prepared under contract by the Australian National Tidal Centre, Bureau of Meteorology, in Adelaide.
- Secondary port predictions prepared, by Maritime Safety Queensland, to supplement the Official predictions.

Other Activities

- Maritime Safety Queensland has two initiatives in place relating to the tidal datum of Queensland ports:-
 - The Tidal Reference Frame
 - The AUSHydroid

The tidal reference frame

- The frame is essentially a control mechanism, the time element of which is the tidal datum epoch.
- The frame consists of the tidal stations for which a long series of readings is available and for which a primary determination of the tidal parameters has been completed.
- It is intended that the frame provides a snapshot of the tidal conditions at a point in time. Accordingly the readings extend over the same time span at each reference station
- The stations are situated along the Queensland coast from Karumba to the Gold Coast.

The tidal parameters

Datum and sea level:-

- The datum of the station (with the associated navigation chart datum and the AUSHydroid);
- The tidal constituent constants (as well as the seasonal constituents Sa and Ssa); and,
- the allowance for sea level rise.

The mean tidal planes:-

- highest astronomical tide;
- mean higher high water;
- mean high water spring tide (semidiurnal waters);
- mean high water;
- mean high water neap tide (semidiurnal waters);
- mean lower high water;
- mean sea level;

- mean higher low water;
- mean low water neap tide (semidiurnal waters);
- mean low water;
- mean low water spring tide (semidiurnal waters);
- mean lower low water; and,
- lowest astronomical tide.

Primary Determination of the Tidal Parameters

- The parameters will be calculated for the primary stations:-
 - from 19 years of observed tides
 - strictly in accordance with the definition (as published in Queensland)
- The result is the primary determination of the height of each parameter
- The primary determination of the heights forms the basis for the determination of the parameters at secondary and tertiary level stations

The AUSHydroid

- Is the height separation "L" between the WGS84 ellipsoid and chart datum.
- Is the marine equivalent of the AUSGeoid, the geoidal separation "N"

• WGS84 is the reference frame

The Datum Separation Model

- AUSGeoid Ellipsoid to Geoid which has
 - a grid of points at which the height of the geoid is known
 - an interpolating process whereby the height of the geoid is estimated at any place within the grid
- AUSHydroid

Ellipsoid to Chart Datum which has

- a grid of points at which the height of the chart datum is known
- an interpolating process whereby the height of the chart datum is estimated at any place within the chart

Determination of the AUSHydroid

- Is a two step process:-
 - 1. Determination of the height of the AUSHydroid at the tidal stations; and,
 - 2. Preparation of an interpolation process by which the height of the AUSHydroid is estimated everywhere within a chart.
- It is important to recognize that the
 - AUSGeoid;
 - Chart datum; and,
 - AUSHydroid;

are not parallel to the WGS84 ellipsoid or with each other.

HAY POINT RTK CONTROL MGA/GDA94 DATUM AND AUSHYDROID HEIGHTS CO-TIDAL ZONE 3800

SITE	EASTING	NORTHING	LATITUDE	LONGITUDE	RL (LAT)	AUS-HYDROID HEIGHT (L98)
NW CORNER ZONE 3800	738312.15	7650901.91	-21°13'40.381"	149°17'45.887"	0.00	51.39
NE CORNER ZONE 3800	754296.76	7650901.91	-21°13'32.587"	149°26'59.943"	0.00	51.35
SE CORNER ZONE 3800	754259.29	7648378.82	-21°14'54.6000"	149°27'00.000"	0.00	51.35
SW CORNER ZONE 3800	738330.51	7645166.13	-21°16'46.792"	149°17'49.415"	0.00	51.39
PM 38627 (Port & TGBM)	738336.283	7645872.193	-21°16'23.8415"	149°17'49.2585"	18.040	51.382

For further information contact: G J (John) Broadbent Maritime Safety Queensland Ph (+617) 3120 7433 Fax (+617) 3120 7430 Email tides@msq.qld.gov.au