TITLE	Reference	Last amendment (CL or IHC)	1 st Edition Reference		
Digital Tide and Tidal Current Tables.	XX/1919 as amended	Draft	Ver 2.0		

NOTE: Items in red still need clarification and approval by the working group members.

1 It is resolved that member Hydrographic Organizations (HO) may choose to publish their tide and tidal current tables in either paper format or digitally. If digitally, they can be distributed either through the HO's web site, or representative complement or via portable media such as a DVD.

General Guidelines for Digital Tide and Tidal Current Tables

2 It is resolved that digital tide and tidal current tables should adhere to all the same requirements as existing paper tide and tidal current tables as specified in IHO Programme 2 "Hydrographic Services and Standards" Section 2.2 – Tides and Water Levels

3 It is resolved that the issuing office should provide documentation on how to install or read the electronic tables, minimum computer specifications how to obtain product support and general information on the Digital Tide and Tidal Current Tables. This information should be provided in either hardcopy written form (for example, on a separate sheet of paper or on the cover of the disk or other media), or electronically in a plain ASCII text 'readme.txt' type of file. This file should also include user license and/or condition of use information.

4 It is resolved that the issuing office should provide its formal name, mailing address; web url and point of contact information on the cover of the media. It should also provide information on the production of the tables (including both address and website), information on how to obtain annual updates, and how to obtain interim updates or errata information.

5 It is resolved that the digital tide and tidal current tables should include a statement concerning the standing of the digital tables as meeting the applicable maritime regulations, either SOLAS and/or local country carriage requirements.

Formats for Digital Tide and Tidal Current Tables

6 It is resolved that there shall be two allowable formats for digital tide and tidal current tables.

A. Scanned Images of Tide and Tidal Current Tables: This format consists of scanned images of the paper tide tables. This format should have the following attributes.

B. Electronically generated Tide and Tidal Current Predictions: This format consists of software and a user interface that calculates tide and tidal current predictions from stored harmonic constituents or time and range offsets.

Detailed Specifications for Digital Tide Tables – Scanned Images of Tide Tables:

7 It is resolved that Scanned Images of Tide Tables should follow the following specifications.

a. Should be a faithful reproduction of all the pages of printed tide tables.

b. The images should be formatted in a widely available, common format. Examples formats include, but not limited to, PDF, tiff, Jpeg, Gif. If PDF files are provided, then information on how to download Adobe[®] Reader must be provided.

c. If multiple books are published, then each book should be located within its own folder and clearly identified.

d. No modification of the scanned images is permitted by users.

Detailed Specifications for Digital Tide Tables - Electronically Generated Tide Predictions

8 It is resolved that Electronically Generated Tide Predictions should follow the following specifications:

a. Station Selection: It is recommended that station selections can either be map based or list based, and should be organized by water body.

b. Station Information: It is recommended that the following information be included with each station;

Station Name and Number (or ID) as appropriate Body of Water Descriptor (if appropriate)

Latitude and Longitude (degrees:min:sec and tenths? or decimal equivalent using GIS convention with western and southern hemispheres as being negative latitude and

longitude)

Horizontal and Vertical Datum convention Location Map with nearby prediction stations identified URL to station or data portal.

c. It is recommended that Earth-Moon-Sun Astronomical Calendar Information (Tabular and/or integrated with graphical data output) be included.

d. It is recommended that Sunrise/Sunset Calendar Information (Tabular and/or integrated with graphical data output)

e. It is recommended that the default reference datum is the Chart Datum used by the Country furthermore, it is recommended that the user have the ability to reference predictions to other tidal datums supported by the HO (such as LAT, HAT, MHW, MSL) and user identified datums such as a national geodetic or ellipsoidal datum or other coastal engineering or threshold datums that are pertinent.

f. It is recommended that data displays and tables can be toggled to both in Metric or English units, with default depending upon country

g. It is recommended that the time displayed is the legal local time as default, with user selected option for UTC/GMT, daylight savings time, etc. Legal time includes daylight savings time if applicable. Furthermore, when time zone information is

displayed it should follow the convention that negative time zone offsets are used for east longitude and positive offsets for west longitude.

h. It is recommended that the following tide prediction source metadata information be provided;

Harmonic Constituents or Time and Range Correction to Reference Station, Dates of Harmonic Analyses time series used to create the set of Harmonic Constituents used in the prediction,

Dates of the observations used to create time and height corrections (for nonharmonic based predictions) to a reference Station,

Links to the list of the Harmonic Constituents used in the Prediction. Furthermore, the display of the Harmonic Constituents should adhere to the IHO <u>National Tidal</u> <u>Constituent Banks Resolution 2/1977 as amended 42/2000 A6.8</u>

The name of the Harmonic Analysis program used to generate the harmonic constituents.

i. It is recommended that the HO provide and display tidal sea level amplitude prediction with a minimum of 4 decimals precision (for metric system) if possible.

j. It is recommended that users have the ability to obtain output in common formats such as PDF, TXT, XML, CSV, S-112 single point formats

k. It is recommended that additional information be provide special warning explaining areas of anomalous tidal conditions, special datums, or tidal based hazards to navigations (dual high or low waters, tidal bores, river flow dependencies and river datums, frequent non-tidal conditions, etc..)

1. It is recommended, when applicable, that estimates of uncertainty in the predicted times and heights of high and low waters be provided to users.

Detailed Specifications for Graphical Display of Electronic Tide Predictions

9 It is resolved that the predictions have the ability to obtain graphical and tabular output for desired time period (either historical and into the future) and should contain the following attributes with the objective not to prescribe a specific graphical view but rather to identify common elements that transcend all types of graphs:

a It is recommend that the predictions can be displayed as discrete points or a continuous curve using a curve fit routine to times and heights of high and low waters or to the time series values.

b It is recommended that all axes should be clearly labelled

c It is recommended that time series data should have a minimum, 1- hour increments

d It is recommended that times and heights of predicted high and low tides should be provided

e It is recommended that the default datum should be the same as chart datum for the location of the prediction

f It is recommended that the tidal height units default should be the same as the HO's printed tables

g It is recommended that the display should include station information (as defined above)

h It is recommended that the display include the name and/or the insignia of the source authority organization

i It is recommended that the display should have the option to view the tide prediction numerical values used to create the graphic.

j It is recommended that the display of the graphical data should be able to be adjusted to suit daytime, twilight, and night time viewing

Detailed Specifications for Digital Tidal Current Tables

- 10 It is resolved that Digital Tidal Current Tables can be in the same two formats as Digital Tide Tables and the same requirements that apply to digital tide tables pertain to tidal current tables.
- 11 It is resolved that electronically generated Tidal Current Predictions do have additional specifications as identified:

a It is recommended that the depth of prediction be included in the metadata and include a the descriptor that the depth is either from the surface down or from the bottom up

b It is recommended, if applicable, flood and ebb current direction (referenced to True North) be presented.

c It is recommended that for graphical display of tidal currents the default speed units should be knots

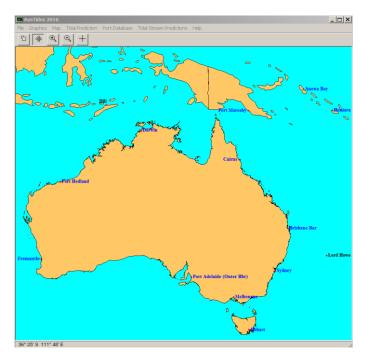
d It is recommended that for graphical display of tidal currents the default direction units should be degrees (referenced to true north).

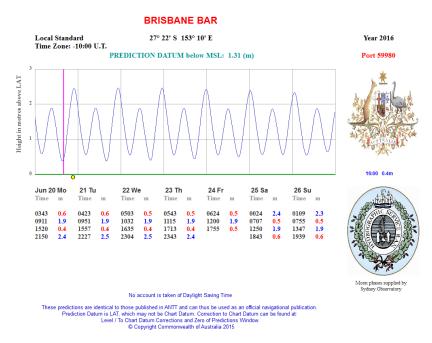
Below are examples of Digital Tide Tables. I do not know if they can be included in the IHO Resolution.

USA - NOAA Example

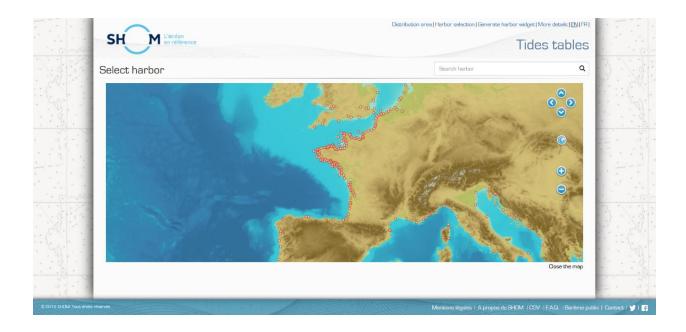

Scanned Tide Table

Albany, New York, 2015 Times and Heights of High and Low Waters


			Jan	uar	y			February									March							
	Time	He	ight		Time	He	ight		Time	He	light		Time	He	ight		Time	He	light		Time	He	eight	
1 Th	0048 0741 1317 2026	n -0.3 5.5 -0.4	155 -9 168 -12	1 6	h m 0026 0705 1241 2006	n 4.2 0.4 5.0 0.4	128 12 152 12	1 Su	0214 0859 1435 2145	5.2 -0.1 5.4 -0.3	om 158 -3 165 -9	16 M	h m 0144 0836 1353 2127	1 4.8 0.3 5.6 0.1	0m 146 9 171 3	1 Su	h m 0102 0743 1324 2029	n 5.4 0.5 5.5 0.1	165 15 168 3	16 M	h m 0023 0715 1230 2006	n 5.1 0.9 5.7 0.7	15 27 17- 2	
2	0142 0833 1407 2120	5.1 -0.3 5.5 -0.4	155 _9 168 _12	17 Sa	0121 0803 1331 2101	4.3 0.3 5.2 0.2	131 9 158 6	2 M	0302 0946 1519 2230	5.2 -0.1 5.4 -0.3	158 -3 165 -9	17	1445 2217	5.0 0.1 5.7 -0.1	152 3 174 -3	8	0153 0834 1413 2117	5.5 0.4 5.6 0.1	168 12 171 3	17 Tu	0120 0817 1333 2059	5.4 0.6 5.9 0.5	16 1 18 1	
3 Sa	0233 0922 1454 2210	5.1 -0.3 5.6 -0.5	155 -9 171 -15	18 Su	0211 0858 1417 2153	4.4 0.1 5.4 0.0	134 3 165 0	3 Tu O	0348 1030 1600 2313	5.2 0.0 5.4 -0.2	158 0 165 -6	18 ₩	0322 1027 1535 2306	5.3 -0.2 5.9 -0.2	162 -6 180 -6	3 Tu	0241 0922 1457 2201	5.6 0.4 5.6 0.1	171 12 171 3	18 W	0212 0915 1428 2150	5.7 0.3 6.0 0.3	17 18	
4 Su O	0321 1009 1538 2256	5.1 -0.2 5.5 -0.4	155 -6 168 -12	19 M	0257 0952 1503 2243	4.6 -0.1 5.6 -0.2	140 -3 171 -6	4 w	0431 1112 1640 2352	5.1 0.1 5.3 -0.1	155 3 162 -3	19 Th	1626 2353	5.4 -0.3 5.9 -0.3	165 -9 180 -9	4 w	0325 1006 1538 2241	5.7 0.4 5.6 0.1	174 12 171 3	19 Th	0300 1009 1519 2239	6.0 0.1 6.2 0.1	18 18	
5 M	0408 1054 1621 2341	5.0 -0.1 5.4 -0.3	152 -3 165 -9	20 Tu	0343 1044 1549 2331	4.8 -0.2 5.7 -0.4	146 -6 174 -12	5 Th	0513 1152 1718	5.1 0.2 5.2	155 6 158	20	0458 1211 1719	5.6 -0.4 5.9	171 -12 180	5 Th O	0406 1049 1617 2319	5.7 0.4 5.5 0.3	174 12 168 9	20 ₽	0347 1102 1610 2326	6.2 -0.1 6.2 0.1	18 18	
6 Tu	0454 1136 1702	4.9 0.1 5.3	149 3 162	21 W	0430 1136 1639	4.9 -0.4 5.7	149 -12 174	6 F	0029 0553 1231 1754	0.0 5.0 0.3 5.1	152 9 155	21 Sa	0040 0549 1303 1815	-0.3 5.6 -0.3 5.8	-9 171 -9 177	6 F	0444 1130 1654 2354	5.6 0.4 5.4 0.4	171 12 165 12	21 Sa	0435 1154 1702	6.3 -0.1 6.1	19	
7 w	0022 0540 1216 1742	-0.2 4.8 0.2 5.1	146 6 155	22 Th	0018 0520 1227 1733	-0.5 5.0 -0.4 5.7	-15 152 -12 174	7 Sa	0104 0632 1310 1826	0.2 5.0 0.5 5.0	6 152 15 152	22 Su	0128 0642 1356 1913	-0.2 5.6 -0.2 5.6	-6 171 -6 171	7 Sa	0520 1209 1728	5.6 0.5 5.3	171 15 162	22 Su	0013 0523 1245 1756	0.2 6.3 0.0 6.0	19 18	
8 Th	0103 0625 1255 1822	0.0 4.7 0.4 5.0	0 143 12 152	23 F	0106 0612 1320 1830	-0.5 5.1 -0.4 5.6	-15 155 -12 171	8 Su	0137 0706 1350 1851	0.3 5.0 0.6 4.9	9 152 18 149	23 M	0216 0739 1452 2012	-0.1 5.6 -0.1 5.5	-3 171 -3 168	8 Su	0027 0550 1249 1757	0.5 5.6 0.6 5.2	15 171 18 158	23 M	0100 0615 1337 1853	0.3 6.2 0.1 5.8	18 17	
9 F	0141 0710 1334 1901	0.1 4.6 0.5 4.9	140 15 149	24 Sa	0154 0708 1414 1931	-0.5 5.2 -0.4 5.5	-15 158 -12 168	9 M	0208 0730 1434 1924	0.4 5.0 0.7 4.8	12 152 21 146	24 Tu	0307 0837 1549 2111	0.1 5.6 0.1 5.4	171 3 165	9 M	0058 0607 1330 1821	0.6 5.7 0.7 5.2	18 174 21 158	24 Tu	0148 0710 1431 1951	0.5 6.1 0.3 5.7	18 18 17	
10 Sa	0219 0755 1416 1940	0.2 4.6 0.6 4.8	140 18 146	25 Su	0244 0806 1511 2032	-0.4 5.2 -0.3 5.4	-12 158 -9 165	10 Tu	0240 0752 1526 2009	0.5 5.1 0.8 4.6	15 155 24 140	25 W	0400 0935 1647 2210	0.2 5.5 0.2 5.3	168 162	10 Tu	0129 0627 1414 1855	0.7 5.8 0.8 5.1	21 177 24 155	25 w	0238 0807 1526 2049	0.7 5.9 0.5 5.6	18 1 17	
11 Su	0256 0839 1503 2021	0.3 4.6 0.7 4.6	9 140 21 140	26 M	0336 0904 1610 2132	-0.3 5.3 -0.2 5.2	162 -6 158	11 w	0320 0832 1627 2109	0.5 5.2 0.9 4.5	15 158 27 137	26 Th	0455 1034 1746 2309	0.4 5.4 0.3 5.2	12 165 9 158	11 W	0202 0704 1504 1942	0.8 5.8 1.0 5.0	24 177 30 152	26 Th	0331 0906 1622 2147	0.9 5.8 0.6 5.5	17 17 11	
12 M	0334 0922 1559 2115	0.4 4.7 0.8 4.4	12 143 24 134	27 Tu	0429 1002 1710 2231	-0.3 5.3 -0.1 5.1	162 -3 155	12 Th	0413 0923 1733 2234	0.7 5.2 0.9 4.4	21 158 27 134	27 F	0552 1133 1843	0.5 5.4 0.3	15 165 9	12 Th	0245 0751 1602 2041	0.9 5.8 1.1 4.9	27 177 34 149	27 F	0426 1005 1718 2245	1.0 5.6 0.7 5.5	31 17 21 16	
13 Tu 0	0416 1006 1701 2220	0.4 4.7 0.8 4.3	12 143 24 131	28 W	0524 1101 1810 2330	-0.2 5.3 -0.1 5.0	162 -3 152	13 F	0520 1028 1837 2348	0.7 5.2 0.8 4.4	21 158 24 134	28 Sa	0007 0648 1231 1938	5.3 0.5 5.4 0.2	162 15 165 6	13 F	0341 0844 1705 2201	1.0 5.8 1.1 4.9	30 177 34 149	28 Sa	0522 1104 1814 2342	1.1 5.6 0.8 5.6	17 17 17	
14 w	0507 1055 1806 2325	0.5 4.8 0.8 4.2	15 146 24 128	29 Th	0620 1159 1908	-0.1 5.3 -0.1	162 -3	14 Sa	0631 1149 1938	0.7 5.2 0.6	21 158 18					14 Sa	0453 0947 1808 2318	1.1 5.6 1.1 4.9	34 171 34 149	29 Su	0619 1202 1907	1.2 5.6 0.7	17 17 2	
15 Th	0605 1148 1908	0.5 4.9 0.7	15 149 21	30 F	0028 0715 1255 2004	5.0 -0.1 5.3 -0.2	152 162 -6	15 Su	0050 0736 1256 2034	4.5 0.5 5.4 0.4	137 15 165 12					15 Su	0607 1110 1909	1.1 5.6 0.9	34 171 27	30 M	0037 0714 1256 1957	5.7 1.1 5.6 0.6	17- 3- 17- 11	
				31 Sa	0123 0808 1347 2057	5.1 -0.1 5.4 -0.3	155 165 -9													31 Tu	0128 0806 1346 2043	5.9 1.0 5.7 0.6	18 31 17- 11	


Time meridian 75° W. 0000 is midnight. 1200 is noon. Times are not adjusted for Daylight Saving Time. Heights are referred to mean low water during lowest river stages which is the chart datum of soundings.

UKHO Example



Australian Example

Example from SHOM (France)

	SH	M	L'océa en réfé	n érence								Distribut	ion area Hart	or selec	ction Ger	erate hart		tables
	Select ha	elect harbor Search harbor d												٩				
	Show the map																	>
	Brest (Fra Coordinates : 04			-	D.0" W													
	Tides tables	Water	level by ha	our Tid	les coefficient											05/02/	2018	S_Time •
			Monday I	Monday February 5, 2018 Hour Height Coefficient			Tuesday February 6, 2018 Hour Height Coefficient				Vednesday Hour		7,2018 Coefficient		Thursday Hour			
1		LW	02:20	1.31	-	LW	03:03	1.74	-	LW	03:49	2.20	-	LW	04:42	2.62	Coefficient	
	G	HW	08:18	6.88	85	HW	08:59	6.40	71	HW	09:45	5.91	56	HW	10:41	5.48	43	Ð
		LW	14:46	1.49	-	LW	15:30	1.98	-	LW	16:19	2.45	-	LW	17:17	2.81	-	
1.		HW	20:41	6.45	78	HW	21:24	6.02	63	HW	22:16	5.62	49	HW	23:21	5.34	39	
				8					•••	•	• •	•						

