
S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting

S-100 – Part 50

Scripting

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting

Page intentionally left blank

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting

Contents

50-1 Scope .. 5

50-2 Conformance ... 5

50-3 Normative References ... 5

50-4 Abbreviations and Definitions .. 5

50-5 Purpose ... 5

50-6 Scripting Catalogue ... 6

50-6.1 Distribution .. 7

50-6.2 Domain Specific Catalogue Functions .. 7

50-7 Data Exchange .. 7

50-7.1 Attribute Path ... 8

50-8 Hosting Requirements ... 8

50-8.1 Lua Version ... 8

50-8.2 Character Encoding ... 8

50-8.3 Error Handling ... 8

50-8.4 Array Parameters .. 9

50-8.5 Host Functions .. 9

50-8.5.1 Compatibility .. 9

50-9 Standard Script Functions ... 9

50-9.1 Standard Catalogue Functions .. 10

50-9.1.1 Object Creation Functions ... 11

50-9.1.2 Miscellaneous Functions ... 19

50-9.2 Standard Host Functions ... 21

50-9.2.1 General Data Model Access Functions ... 21

50-9.2.2 Type Information Access Functions .. 34

50-9.2.3 Spatial Operations Functions .. 34

50-9.2.4 Debugger Support Functions .. 36

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting

Page intentionally left blank

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 5

50-1 Scope

This part defines a standard mechanism for including scripting support in S-100 based
products. Scripting provides for processing of S-100 based datasets via script files written in
the Lua programming language.

50-2 Conformance

Scripts conforming to this part shall be implemented using version 5.3 of the Lua
programming language.

50-3 Normative References

The following referenced documents are required for the application of this document. For
dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including amendments) applies.

IETF RFC 7159, The JavaScript Object Notation (JSON) Data Interchange Format.

Lua 5.3 Reference Manual, https://www.lua.org/manual/5.3/

ISO 19125-1:2004, Geographic information -- Simple feature access -- Part 1: Common
architecture.

50-4 Abbreviations and Definitions

API – Application Programming Interface

Domain Specific Functions – All scripting functions which are defined outside of this part. The
union of Domain Specific Host Functions and Domain Specific Catalogue Functions.

Domain Specific Catalogue Functions – Scripting functions provided within a scripting
catalogue which are not part of the standard catalogue functions.

Domain Specific Host Functions – Scripting functions provided by a host to support domain-
specific functionalities.

ECDIS – Electronic Chart Display and Information System

Host – The environment hosting the Lua interpreter. This is usually an application which
utilizes S-100 products, such as an ECDIS.

Host Functions – The scripting functions provided by a host. The union of the Standard Host
Functions and the Domain Specific Host Functions.

JSON – JavaScript Object Notation.

Scripting Catalogue – Generic term describing a collection of one or more files containing
scripting functions.

Scripting Domain – The application of scripting to an S-100 domain, such as portrayal.

Scripting Engine – A Lua interpreter or virtual machine.

Scripting Function – A function written in Lua.

Standard Catalogue Functions - Scripting functions which are guaranteed to be provided
within all scripting catalogues.

Standard Host Functions – Scripting functions which must be provided by the host.

Standard Scripting Functions – All scripting functions defined within this part. The union of
Standard Host Functions and Standard Catalogue Functions.

50-5 Purpose

https://www.lua.org/manual/5.3/

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 6

This part is provided to permit the unequivocal expression and processing of rules for S-100
based products. Possible usage examples include: portrayal rules, product interoperability
rules, rules for detecting navigational hazards, data validation rules, etc.

The use of scripting removes ambiguity from rule expression, ensures consistency among
applications, and allows for rules to be modified or extended via catalogue updates.

50-6 Scripting Catalogue

A scripting catalogue is a collection of script files written for use within a scripting domain.

For instance, portrayal is a scripting domain. The rule files contained within a Lua portrayal
catalogue comprise a scripting catalogue.

All scripting catalogues are guaranteed to contain the standard catalogue functions defined in
50-9.1. Scripting catalogues may additionally contain domain specific catalogue functions.
The standard catalogue functions simplify the creation, integration, and testing of scripts
within a scripting domain.

Figure 1 – Composition of a Scripting Catalogue

In order to apply rules within a scripting domain, scripting catalogues interact with host
functions. The relationship between the scripting catalogue and the host functions is shown
below. The host functions serve to decouple the scripting catalogue from the hosts
implementation of S-100 concepts and functionalities.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 7

Figure 2 - Scripting Catalogue / Host interaction within a Scripting Domain

50-6.1 Distribution

The distribution mechanism of a scripting catalogue is defined within the scripting domain. For
example, S-100 Part 9A includes a scripting catalogue within the portrayal catalogue;
distribution of the scripting catalogue is accomplished via distribution of the portrayal
catalogue.

Each instance of a scripting catalogue must include all standard catalogue functions.

50-6.2 Domain Specific Catalogue Functions

The standard scripting functions are always available within a scripting catalogue. Parts of S-
100 which use scripting may provide additional scripting functions as needed to support
domain-specific functionality. In this case, the additional functions are referred to as "domain
specific functions".

Domain specific functions intended for host / scripting catalogue interaction must be specified
within the relevant part of S-100. Domain specific functions used internally within a scripting
catalogue need not be specified within S-100.

For example, assume S-100 Part N uses scripting and requires the addition of scripting
functions X, Y, and Z. S-100 Part N must specify functions X, Y, and Z are required, and
provide the documentation for each function.

Domain specific functions used for interaction between a host and scripting catalogue are
referred to as "domain specific host functions" or "domain specific catalogue functions",
depending on where they are implemented.

50-7 Data Exchange

Data that is passed to the host from a scripting catalogue may be retrieved using the Lua C
API functions that correspond to the data type. For the simple data types such as boolean,
string and number, retrieval of the data is trivial. However, the scripting catalogue encodes
complex data types into Lua tables which the host may find more difficult to parse.

The host may find it easier to parse the complex data types using JavaScript Object Notation
(JSON). To support this, the scripting catalogue provides the ConvertToJSON function to
convert Lua table data into a JSON string.

Details of the JSON string format are provided in the documentation of the ConvertToJSON
function. Note that passing data into the scripting catalogue using JSON is not supported.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 8

50-7.1 Attribute Path

Scripting catalogues need to be able to determine the value of the attributes on each feature
instance contained within a dataset. In order to do so, a catalogue will query the host for each
attribute value as needed. When querying a host, the catalogue must identify which attribute
of a given feature is being queried. If a feature instance contains only simple attributes,
identifying the feature instance and attribute code is sufficient for the host to uniquely identify
the requested attribute.

The host requires more information when the attribute value is contained within a complex
attribute. For example, consider the following attribute value lookup:

feature.sectorCharacteristic[2].lightSector[1].valueOfNominalRange

Here the feature has a complex attribute sectorCharacteristic, which is an array. The second
entry of sectorCharacteristic contains the complex attribute lightSector, the first entry of which
contains the simple attribute valueOfNominalRange.

When requesting the value of valueOfNominalRange, scripting must provide the host with a
path to the desired attribute, in addition to the code of the desired attribute. The path is
required because the feature instance may have multiple attribute instances with the same
code contained within alternate attribute paths – e.g. feature.simpleAttribute, vs.
feature.complexAttribute[n].simpleAttribute vs. feature.complexAttribute[n+1].simpleAttribute.

When the scripting catalogue requests an attribute value from the host, an attribute path is
provided to the host as an array of tables. Each table has two elements: AttributeCode and
Index. AttributeCode contains the code of a complex attribute; Index stores the array index of
the complex attribute.

Rather than parsing attribute paths from a Lua table, the host may use ConvertToJSON to
express the attribute path using JSON. In the example above, the path to
valueOfNominalRange would be expressed in JSON as follows:

[

{

“AttributeCode” : “sectorCharacteristic”,

“Index” : 2

},

{

“AttributeCode” : “lightSector”,

“Index” : 1

}

]

50-8 Hosting Requirements

This section defines the requirements imposed on a host in order to support scripting
functionality. For example, a program written to display an S-101 chart using the S-100 Part
9A portrayal must conform to the requirements of this section.

50-8.1 Lua Version

The host must provide a scripting engine; a Lua version 5.3 interpreter or virtual machine. The
reference implementation is available from lua.org. Embedding the reference implementation
into the host is recommended.

Further guidance on embedding is provided in Programming in Lua – Part IV (The C API),
details of which are available at https://www.lua.org/pil/.

50-8.2 Character Encoding

All strings exchanged between the host and the scripting catalogue must be UTF-8 encoded.

50-8.3 Error Handling

When calling Lua scripting catalogue functions from the host, a return value of LUA_OK from
lua_pcall indicates success. Otherwise, the standard Lua error handling mechanism is used;

http://www.lua.org/
https://www.lua.org/pil/

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 9

an error code is returned to the host and a string detailing the error will be available on the top
of the stack.

50-8.4 Array Parameters

Several of the scripting catalogue functions expect arrays to be passed as parameters. The
arrays are standard Lua arrays which should be created using the Lua C API array functions
as documented in Programming in Lua – Part IV (The C API).

50-8.5 Host Functions

The host must provide the standard host functions detailed in 50-9.1.

The host must also provide domain specific host functions in order to support domain specific
functionalities. Domain specific functionalities which are unused by the host do not need to be
provided. Documentation for domain specific host functions is provided in the part(s) of S-100
describing the domain specific functionality.

50-8.5.1 Compatibility

The host must guarantee backwards compatibility of the host provided functions with all
previously published scripting catalogues. That is, when implementing function X, the host
must only call scripting catalogue functions which were available in the version of S-100 when
X was added.

Failure to conform to this requirement may result in incompatibilities when the host attempts
to run older scripting catalogues.

50-8.5.1.1 Scripting Catalogue / Host Incompatibility

As new versions of S-100 are published, scripting functions may be added. Scripting functions
will never be removed from S-100, although the use of a particular function may be
deprecated.

Although backwards compatibility is guaranteed, newer scripting catalogues may attempt to
call host functions which are unsupported by the current host. This situation is indicative of a
host which has not been updated with the latest host scripting functions. To limit the
occurrence of such cases, scripting catalogues will be written using the earliest subset of
scripting functions possible.

Scripting incompatibilities (missing host functions) are indicated during scripting initialization.
Incompatibility is indicated to the host by returning LUA_ERRERR from lua_pcall; the error
string at the top of the stack will detail the cause of the incompatibility.

50-9 Standard Script Functions

This section describes the set of standard script functions which constitute the scripting
system. There are two sets of functions described: standard host functions and standard
catalogue functions.

Standard host functions, as described in 50-9.1, are to be implemented by the program which
is hosting the scripting environment. Standard catalogue functions, as described in 50-9.1,
are provided within a scripting catalogue.

The figure below shows the location of each type of scripting function within the scripting
environment.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 10

Figure 3 – Location of script functions within the scripting environment

Each standard script function is described below on its own page. A description of the
functions purpose, along with a description of the parameters and return value are provided.
For clarity, void is used to indicate that a function has no return value.

Function parameters which can accept multiple types will be indicated as variant. variant will
also be used if the function can return more than one type. For instance, a function which
accepts both integers and strings for its first parameter, and returns either an integer or string
dependent on the type passed for the first parameter, would have a signature of:

variant Function(variant param1)

The function description will indicate the types which are permitted for the variant
parameter(s).

Many of the standard script functions accept a datasetID, featureID, or other type of ID
parameter. The host must ensure that these various ID parameters uniquely identify a single
instance among all datasets across all product types to be used by the host during a scripting
session. Since each type of ID is a string, one way to accomplish this is by prepending the
relevant information to the ID: e.g. "S101.US3DE01M__.000.F1" to identify the first feature in
the referenced S-101 dataset.

50-9.1 Standard Catalogue Functions

This section describes the standard set of functions which are provided by all scripting
catalogues.

All strings passed to these functions must be UTF-8 encoded.

When calling these functions, attribute values are always passed from the host to the scripting
environment using strings. This allows values which don’t have Lua equivalents to be passed
unambiguously. This also allows for decimal values to be passed without the loss of precision
which can occur during conversion to IEEE floating point types.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 11

The following table shows the string representations of the value types defined by
S100_CD_AttributeValueType.

S100_CD_AttributeValueType Representation

Boolean “0” represents False

“1” represents True

Enumeration S100_FC_ListedValue:code. Do not use S100_FC_ListValue:label

Integer String representation of a signed integer.

Real String representation of a decimal number. Trailing zeros are permitted only if
significant.

Text As provided.

Date Character encoding shall follow the format for date as specified by ISO 8601

Time Character encoding shall follow the format for time as specified by ISO 8601

dateTime Character encoding shall follow the format for date and time as specified by
ISO 8601

URI Character encoding shall follow the format for URI as specified by RFC 3986

URL Character encoding shall follow the format for URL as specified by RFC 3986

URN Character encoding shall follow the format for URN as defined by RFC 2141

S100_CodeList As provided.

S100_TruncatedDate As provided.

50-9.1.1 Object Creation Functions

These functions relieve the host from the burden of constructing Lua tables corresponding to
complex types used within the scripting catalogue. They allow the host to create objects used
when calling into the scripting catalogue. The contents of the created objects are opaque to
the host – they are only intended for use within the scripting catalogue.

NOTE: The spatial object creation functions provided here are sufficient for
processing of S-101 datasets. The next revision of this part will include
complete coverage of the spatial types defined in S-100 Part 7.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 12

50-9.1.1.1 SpatialAssociation CreateSpatialAssociation(string spatialType, string spatialID,
string orientation, integer scaleMinimum, integer scaleMaximum)

Return Value

SpatialAssociation

A Lua table containing a spatial association object.

Parameters

spatialType: string

The type of the spatial. One of: "Point", "MultiPoint", "Curve", "CompositeCurve", or
"Surface".

spatialID: string

Used by the host to uniquely identify a spatial.

orientation: string

Orientation of the spatial. One of Forward or Reverse.

scaleMinimum: integer or nil

Minimum display scale for the spatial or nil.

scaleMaximum: integer or nil

Maximum display scale for the spatial or nil.

Remarks

Called from the host to create a spatial association for use by the scripting catalogue.

It is not intended that the host manipulate the returned spatial association directly; the spatial
association is intended to be passed from the host back to the scripting catalogue.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 13

50-9.1.1.2 Point CreatePoint(string x, string y, string z)

Return Value

Point

A Lua table containing a point object.

Parameters

x: string

X coordinate for the point.

y: string

Y coordinate for the point.

z: string

Z coordinate for the point. For 2D points, this value shall be nil.

Remarks

The x, y and z are expressed using the real string representation as described in section 50-
9.1

Called from the host to create a point spatial object for use by the scripting catalogue.

It is not intended that the host manipulate the returned point directly; the point is intended to
be passed from the host back to the scripting catalogue.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 14

50-9.1.1.3 MultiPoint CreateMultiPoint(Point[] points)

Return Value

MultiPoint

A Lua table containing a multipoint object.

Parameters

points: Point[]

A Lua array of points. The host creates each point by calling CreatePoint.

Remarks

Called from the host to create a multipoint spatial object for use by the scripting catalogue.

It is not intended that the host manipulate the returned multipoint directly; the multipoint is
intended to be passed from the host back to the scripting catalogue.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 15

50-9.1.1.4 CurveSegment CreateCurveSegment(Point[] controlPoints, string interpolation)

Return Value

CurveSegment

A Lua table containing a curve segment object.

Parameters

controlPoints: Point[]

Array of points that define the control points of the curve segment. The host creates
each controlPoint by calling CreatePoint.

interpolation: string

The interpolation to use when connecting the control points. One of: "None", "Linear",
"Geodesic", "Arc3Points", "Loxodromic", "Elliptical", "Conic",
"CircularArcCenterPointWithRadiusEnd".

Remarks

Called from the host to create a curve segment spatial object.

It is not intended that the host manipulate the returned curve segment directly; the curve
segment is intended to be passed from the host back to the scripting catalogue.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 16

50-9.1.1.5 Curve CreateCurve(Point startPoint, Point endPoint, CurveSegment[] segments)

Return Value

Curve

A Lua table containing a curve object.

Parameters

startPoint: Point

Start point for the curve. Host creates by calling CreatePoint.

endPoint: Point

End point for the curve. Host creates by calling CreatePoint.

segments: CurveSegment[]

An array of curve segments comprising the curve. Each array entry is created by
calling CreateCurveSegment.

Remarks

Called from the host to create a curve spatial object.

It is not intended that the host manipulate the returned curve directly; the curve is intended to
be passed from the host back to the scripting catalogue.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 17

50-9.1.1.6 CompositeCurve CreateCompositeCurve(SpatialAssociation[]
curveAssociations)

Return Value

CompositeCurve

A Lua table containing a composite curve object.

Parameters

curveAssociations: SpatialAssociation[]

Array of spatial associations that define the elements of the composite curve. The
host creates each SpatialAssociation by calling CreateSpatialAssociation.

Remarks

Called from the host to create a composite curve spatial object.

It is not intended that the host manipulate the returned composite curve directly; the
composite curve is intended to be passed from the host back to the scripting catalogue.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 18

50-9.1.1.7 Surface CreateSurface(SpatialAssociation exteriorRing, SpatialAssociation[]
interiorRings)

Return Value

Surface

A Lua table containing a surface object.

Parameters

exteriorRing: SpatialAssociation

The spatial association of the ring that defines the exterior ring of the surface. Host
creates by calling CreateSpatialAssociation.

interiorRings: SpatialAssociation[]

Defines the "holes" within the surface. Host creates each interior ring by calling
CreateSpatialAssociation. If there are no holes, this parameter is nil.

Remarks

Called from the host to create a surface spatial object.

It is not intended that the host manipulate the returned surface directly; the surface is
intended to be passed from the host back to the scripting catalogue.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 19

50-9.1.2 Miscellaneous Functions

The functions described on the following pages do not fall under one of the previously
described functionalities.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 20

50-9.1.2.1 string ConvertToJSON(Table data)

Return Value

UTF-8 encoded string containing the JSON representation of data.

Parameters

data: Table

A Lua table that is to be converted to JSON.

Remarks

Converts the given Lua table into its UTF-8 encoded string representation using JavaScript
Object Notation (JSON). Note that scripting catalogues do not accept JSON formatted data;
this routine is a convenience for hosts which would rather parse JSON as opposed to Lua
tables.

The following table shows the mapping of types between Lua and JSON:

Lua Type JSON Type Comments

Table object Each string indexed field in the Lua table is represented using a name/value
pair in the JSON object.

Tables containing integer indices (Lua arrays) map to JSON array values
where the name maps to "" (empty string). The sequence of values are
equivalent in the Lua and JSON arrays.

Array array

Number number

String string

Boolean true/false

Nil null

Example

The following shows a Lua table representing a feature instance along with the equivalent
JSON representation.

Lua Table:

Feature

Field Type Value

Type string Feature

ID string 127

Code string beaconLateral

Colour [integer] 1, 3

featureName table Name = beacon 1

JSON string:

{

 “Type” : “Feature”

 “ID” : “127”

 “Code” : “beaconLateral”

 “colour” : [1, 3]

 “featureName” : { “Name” : “beacon 1” }

}

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 21

50-9.2 Standard Host Functions

The host must provide a set of "callback" functions that provide the scripting environment
with: access to the hosts representation of the S-100 General Data Model, access to type
information for any entity defined by the General Data Model, and access to spatial
operations which can be used to perform relational tests and operations on spatial elements
defined by the General Data Model. The host may optionally provide a callback function used
to interact with a debugger.

Offloading these tasks to the host, rather than providing rigid data structures which are
passed between the host and scripting, allows the host to interact with scripting using the
hosts optimal representation of the General Data Model. Host translation of its internal data
model to a particular input schema is not necessary when using scripting.

Any of the standard host functions may be called from the scripting catalogue during the
execution of a script.

50-9.2.1 General Data Model Access Functions

The host must implement the functions described on the following pages to allow the scripting
environment to access the General Data Model of a dataset. These functions provide the
scripting environment with access to features, spatials, attribute values, and information
associations.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 22

50-9.2.1.1 string[] HostDatasetGetFeatureIDs(string datasetID)

Return Value

string[]

A Lua array containing all of the feature IDs in the dataset.

Parameters

datasetID: string

Used by the host to uniquely identify a dataset.

Remarks

Allows scripts to query the host for a list of features contained within a given dataset.

Instructs the host to return an array containing all feature IDs in the given dataset.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 23

50-9.2.1.2 string HostFeatureGetType(string featureID)

Return Value

string

The code defined by the feature catalogue for the feature type of the feature instance.

Parameters

featureID: string

Used by the host to uniquely identify a feature instance.

Remarks

Instructs the host to return the feature type code for the feature instance identified by
featureID.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 24

50-9.2.1.3 variant HostFeatureGetSimpleAttribute(string featureID, path path, string
attributeCode)

Return Value

nil

Attribute value is unknown.

string[]

The textual representation of each attribute value, as described in section 50-9.1. An
array is returned even if the attribute has a single value.

Parameters

featureID: string

Used by the host to uniquely identify a feature instance.

path: path

An attribute path as described in section 50-7.1.

attributeCode: string

One of the attribute codes defined in the feature catalogue for the feature type
identified by featureID.

Remarks

Instructs the host to perform a simple attribute lookup on the attribute attributeCode at the
path path for the feature instance identified by featureID. An empty array is returned if the
requested attribute is not present.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 25

50-9.2.1.4 variant HostFeatureGetAttributeCount(string featureID, path path, string
attributeCode)

Return Value

nil

The requested attribute is not valid at the path for the feature instance.

integer

The number of matching attributes that exist at the path for the feature instance. If
the multiplicity of the attribute is 1, then this value is -1.

Parameters

featureID: string

Used by the host to uniquely identify a feature instance.

path: path

An attribute path as described in section 50-7.1.

attributeCode: string

One of the attribute codes defined in the feature catalogue for the feature type
identified by featureID.

Remarks

Instructs the host to return the number of attributes matching attributeCode at the given
attribute path for the given feature instance. If the attribute is not valid at this path according
to the feature catalogue, the host returns nil.

For valid attributes, the host returns the number of attributes at the requested path. This
number can be zero. If the attribute is single valued (i.e. upper multiplicity of one) and
present the host returns -1.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 26

50-9.2.1.5 SpatialAssociation[] HostFeatureGetSpatialAssociations(string featureID)

Return Value

SpatialAssociation[]

A Lua array containing all of the spatial associations for the feature instance
represented by featureID.

Parameters

featureID: string

Used by the host to uniquely identify a feature instance.

Remarks

Instructs the host to return an array containing the spatial associations for the given feature
instance. For each spatial association the feature contains, the host calls the standard
catalogue function CreateSpatialAssociation to create the SpatialAssociation object.

The host should return an empty array if the feature has no spatial associations.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 27

50-9.2.1.6 variant HostFeatureGetAssociatedFeatureIDs(string featureID, string
associationCode, string roleCode)

Return Value

nil

The feature association is not valid for this feature.

string[]

A Lua array containing the associated features IDs.

Parameters

featureID: string

Used by the host to uniquely identify a feature instance.

associationCode: string

Code for requested association as defined by the feature catalogue.

roleCode: string

Code for requested role as defined by the feature catalogue. Can be nil if
associationCode by itself is enough to specify the association or if all roles defined by
associationCode are desired.

Remarks

When called, the host returns an array containing the feature IDs associated with the given
feature instance that match associationCode and roleCode. If the feature association is not
valid for this feature according to the feature catalogue, the host returns nil. If no matches are
found the host returns an empty array.

The roleCode may be nil, in which case only the associationCode should be used for lookup.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 28

50-9.2.1.7 variant HostFeatureGetAssociatedInformationIDs(string featureID, string
associationCode, string roleCode)

Return Value

nil

The information association is not valid for this feature.

string[]

A Lua array containing the associated information IDs.

Parameters

featureID: string

Used by the host to uniquely identify a feature instance.

associationCode: string

Code for requested association as defined by the feature catalogue.

roleCode: string

Code for requested role as defined by the feature catalogue. Can be nil if
associationCode by itself is enough to specify the association or if all roles defined by
associationCode are desired.

Remarks

When called, the host returns an array containing the information IDs associated with the
given feature instance that match associationCode and roleCode. If the information
association is not valid for this feature according to the feature catalogue, the host returns nil.
If no matches are found the host returns an empty array.

The roleCode may be nil, in which case only the associationCode is used for lookup.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 29

50-9.2.1.8 Spatial HostGetSpatial(string spatialID)

Return Value

Spatial

A spatial object created via a standard catalogue function as listed in the remarks.

Parameters

spatialID: string

Used by the host to uniquely identify a spatial.

Remarks

Queries the host for a given spatial.

The host creates the spatial using one of the following standard catalogue functions:
CreatePoint, CreateMultiPoint, CreateCurve, CreateCompositeCurve, or CreateSurface.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 30

50-9.2.1.9 variant HostSpatialGetAssociatedInformationIDs(string spatialID, string
associationCode, string roleCode)

Return Value

nil

The information association is not valid for this spatial.

string[]

A Lua array containing the associated information IDs.

Parameters

spatialID: string

Used by the host to uniquely identify a spatial.

associationCode: string

Code for requested association as defined by the feature catalogue.

roleCode: string

Code for requested role as defined by the feature catalogue. Can be nil if
associationCode by itself is enough to specify the association or if all roles defined by
associationCode are desired.

Remarks

When called, the host returns an array containing the information IDs for the given spatial
instance that match associationCode and roleCode. If the information association is not valid
for this feature according to the feature catalogue, the host returns nil. If no matches are
found the host returns an empty array.

The roleCode may be nil, in which case only the associationCode is used for lookup.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 31

50-9.2.1.10 string[] HostSpatialGetAssociatedFeatureIDs(string spatialID)

Return Value

string[]

A Lua array containing the requested associated feature IDs for the spatial identified
by spatialID.

Parameters

spatialID: string

Used by the host to uniquely identify a spatial.

Remarks

When called, the host returns an array of all feature instances that reference the given spatial.
A feature instance is considered to be associated to a spatial either directly through the
spatial associations on the feature, or indirectly in the case of curves referenced by composite
curves.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 32

50-9.2.1.11 variant HostInformationGetSimpleAttribute(string informationID, path path,
string attributeCode)

Return Value

nil

Attribute value is unknown.

string[]

The textual representation of each attribute value, as described in section 50-9.1. An
array is returned even if the attribute has a single value.

Parameters

informationID: string

Used by the host to uniquely identify an information instance.

path: path

An attribute path as defined in section 50-7.1.

attributeCode: string

One of the attribute codes defined in the feature catalogue for the information type
identified by informationID.

Remarks

Instructs the host to perform a simple attribute lookup on the attribute attributeCode at the
indicated path for the information instance identified by informationID.. An empty array is
returned if the requested attribute is not present.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 33

50-9.2.1.12 variant HostInformationGetAttributeCount(string informationID, path path,
string attributeCode)

Return Value

nil

The requested attribute is not valid at the path for the information instance.

integer

The number of matching attributes that exist at the path for the information instance.
If the multiplicity of the attribute is 1, then this value is -1.

Parameters

informationID: string

Used by the host to uniquely identify an information instance.

path: path

An attribute path as defined in section 50-7.1.

attributeCode: string

One of the attribute codes defined in the feature catalogue for the information type
identified by informationID.

Remarks

Instructs the host to return the number of attributes matching attributeCode at the given
attribute path for the given information instance. If the attribute is not valid at this path
according to the feature catalogue, the host returns nil.

For valid attributes, the host returns the number of attributes at the requested path. This
number can be zero. If the attribute is single valued (i.e. upper multiplicity of one) and
present the host returns -1.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 34

50-9.2.2 Type Information Access Functions

These functions allow the scripting environment to query the type information for any entity
defined by General Data Model for any loaded datasets. The type information provided must
be consistent with that provided by the feature catalogue for the relevant product.

The host must implement the functions described on the following pages to provide the
scripting environment access to type information for entities defined by the General Data
Model.

NOTE: Type information access functions are not included in this draft. They
were not needed to support portrayal; the proof-of-concept for scripting. Type
information access functions will be required for data validation, and to
support future yet to be defined scripting domains.

50-9.2.3 Spatial Operations Functions

These functions allow the scripting environment to perform relational tests and operations on
spatial elements.

The host must implement the functions described on the following pages to provide the
scripting environment with the ability to relate spatial entities to one another.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 35

50-9.2.3.1 boolean HostSpatialRelate(string spatialID1, string spatialID2, string
intersectionPatternMatrix)

Return Value

boolean

Returns true if the geometries represented by the two spatials are related as specified
in the DE-9IM matrix.

Parameters

spatialID1: string

Used by the host to uniquely identify a spatial instance.

spatialID2: string

Used by the host to uniquely identify a spatial instance.

intersectionPatternMatrix: string

DE-9IM intersection matrix expressed as nine characters in row major order. E.g.
when testing for overlap between two areas: “T*T***T**”

Remarks

Spatially relates the geometries represented by spatialID1 and spatialID2 using the DE-9IM
intersection specified via the intersectionPatternMatrix string.

For details on DE-9IM string representation refer to ISO 19125-1:2004, Geographic
information -- Simple feature access -- Part 1: Common architecture, section 6.1.14.2 The
Dimensionally Extended Nine-Intersection Model (DE-9IM).

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 36

50-9.2.4 Debugger Support Functions

These functions allow the scripting environment to interact with a debugger which may be
running on the host. A debugger may be desired as an aide in developing the required
standard host functions.

Host implementation of the debugger support functions is optional. Scripts will execute
normally regardless of whether the host implements these functions.

S-100 Edition 3.0.0 *** DRAFT *** July 7, 2017

Part 50 - Scripting 37

50-9.2.4.1 void HostDebuggerEntry(string debugAction, string message)

Return Value

None

Parameters

debugAction: string

Indicates the requested debugger action:

break – Pause execution of the script.

trace – Display a string in the debugging console.

start_profiler – Begin line by line profiling of the script code.

stop_profiler – Stop line by line profiling of the script code.

message: string

Message to display on the debugging console. This is optional for all debug actions
except trace, where it is mandatory.

Remarks

Host implementation of this function is optional.

