
1

S-100 TSM5 4.11

Paper for Consideration by S-100 TSM5

Updating GML datasets

Submitted by: Raphael Malyankar & Eivind Mong

Executive Summary: Describes an approach to updating GML datasets.

Related Documents: --

Related Projects: S-100; all product specifications using the GML data format

Introduction / Background

This paper presents an approach to defining update datasets encoded using the GML format. An “update dataset”
is defined as a collection of data that can be applied to an existing dataset to add, delete, or amend specific
instances of features, information types, or spatial types. An update dataset as defined in this paper is not a
complete self-contained dataset that can replace an existing dataset in its entirety but a delta that is applied to a
dataset to produce a new version of the dataset.

The scope of this paper is limited to datasets in the GML format.

References

[1] The IEEE & The Open Group, POSIX.1-2008. IEEE 1003.1-2008/Cor 2-2016 - Standard for Information
Technology--Portable Operating System Interface (POSIX®) Base Specifications, Issue 7, also known as The
Open Group Technical Standard Base Specifications, Issue 7.
<http://pubs.opengroup.org/onlinepubs/9699919799/>.

[2] Urpalainen, J., "An Extensible Markup Language (XML) Patch Operations Framework Utilizing XML Path
Language (XPath) Selectors", RFC 5261, DOI 10.17487/RFC5261, September 2008,
<http://www.rfc-editor.org/info/rfc5261>.

Approaches

Possible approaches to updating are listed below, and discussed in more detail in the rest of this section.
‘Updates’ in the following includes additions, deletions, and replacements.

1) Attribute-level update – update delta dataset describes updates to attributes as well as instances.
2) Object-level update – update delta dataset described updates only at the instance level.
3) Update with a text-based ‘patch’ utility – update is a purely text-based delta between the current and updated

dataset that ignores structure and semantics.
4) XML-aware patching – update is an XML-based delta that identifies the XML item (attribute or instance)

being updated.
5) Whole-dataset replacement – the entire dataset is distributed when an update is necessary.

Attribute-level update

This is similar conceptually to the approach described in S-100 Part 10a. Only the new or changed parts of the
features/information types/spatial object instance would be included in the update dataset. This approach would
need definition of an update delta dataset structure. Since an update to a feature generally does not change all
the attributes of the original feature, it will also be necessary to define a new GML schema for update datasets for
each product specification which allows object types (features and information types) to contain any of the
attributes bound to it in the feature catalogue while relaxing all constraints which make attributes mandatory.
Structurally this would be very similar to the application schema that define the base dataset format, but it would
relax requirements for mandatory attributes. It will also be necessary to define a format for deltas to spatial types
that is capable of indicating exactly which component of the spatial type (curve segment, point, etc.) is being
updated.

This approach also includes updates at the instance level, i.e., new feature, information type, and spatial
instances can be added, deleted, and replaced.

2

Object-level update

Only whole instances can be added, deleted, or replaced. Even if the only change is to the value of a single
attribute, the whole feature or information type instance type is included in the update dataset. The update
dataset contains whole instances of the object being updated. For this approach, it is not necessary to maintain a
current version of the dataset in order to generate the delta, only to record the identity and versions of instances
in the dataset.

Update with text-based patch utility

Since GML datasets are text files, another possibility is to treat them as ordinary text files and use a “patch” utility
[1] to apply changes distributed in the form of a patch file. Text patch utilities are system utilities on Unix and
Linux systems and there are open-source implementations available for Windows operating systems. The ‘patch’
method requires that the file being patched on the end-user system mirror the version on the production system. It
also assumes that all predecessor patches have been applied. The update dataset here would consist of a
collection of fragments – generally one or more lines – that are being added or replaced, accompanied with
location information (such as line numbers and/or surrounding lines for context) that tells the patch utility where in
the dataset to apply the patch. No XSD file is required for the update dataset since its format must conform to the
‘diff’, ‘ed’, and ‘patch’ utilities, which format is described in the cited standard.

XML-aware patching

A specification for describing patches to XML documents is available (reference [2]). This specification uses XML
Path Language (XPath) selector expressions to locate the XML content being changed and defines basic add,
replace, and delete operations. There are open-source utilities that can generate a patch file conforming to this
specification and other utilities that can apply the patch file to XML files. This is also conceptually similar to the
attribute (and higher) level update approach defined in S-100 Part 10a. The structure of the update dataset is
described by the schema defined in the cited reference and is independent of the GML application schema for the
specific data product. In this approach it would be necessary to maintain a current version of each object as
distributed in order to generate each delta update, but proper definition of the XPath expressions (leveraging the
fact that objects have IDs that are unique in the dataset – and also globally unique, if global identifiers are
introduced) should reduce or remove altogether the need to maintain a current copy of the dataset in order to
generate the next delta update.

An example for an addition of a restriction attribute to a RestrictedAreaNavigational feature:

<add sel="//RestrictedAreaNavigational[@gml:id = ‘RESARE55’]">

<restriction>entry prohibited</restriction>

</add>

Whole-dataset replacement

This method of updating consists of distributing an updated dataset in its entirety when an update is needed. It
would be the default method in the absence of any of the others. The replacement would be a new edition. The
volume would be highest. For certain kinds of data products and certain application domains this would in fact be
the most appropriate method, especially if the data are volatile over most or all of the dataset coverage or if
bandwidth limitations are not a factor. Weather images are a case in point. Another example is S-124 navigation
warnings.

Analysis of approaches

The approaches are not all mutually exclusive. For example, both attribute- and object-level update can be
achieved using a patch file or XML-aware patching, combined with appropriate rules for creating the update
dataset. Defining a specification that allows attribute-level update should be feasible using option 4 (XML-aware
patching) in the list. The table that follows compares the approaches.

A large proportion of the total size of many datasets is due to long strings of geographic coordinates necessary
for encoding curves and surfaces. Replacing them in their entirety will add a significant amount of overhead
when only a few coordinates are changed. Similar considerations apply to the values of gridded data or value sets
associated with multi-points, such as Sounding and Depth – no bottom found features in S-101. Special
methods can be developed that allow delta updates to contain only the sections of the lists or value sets which
are being updated.

3

Table 1. Comparative analysis of approaches to updating S-100 datasets

Factor/Approach Attribute-level Object-level Text patch XML patch Whole-dataset

Update detail Attribute, instance, spatial object,
spatial primitive

Instance, spatial object Line-based Attribute, instance, spatial object,
spatial primitive

Dataset as a whole

Schema Modification of base dataset
GML schema

Same as base dataset
GML schema

Not needed Special XML schema common to
multiple products

Same as base dataset

Robustness Flexible, can work around some
types of errors, sequential
updates loosely coupled.
Cumulative patch can be
created.

More flexible, can work
around more types of
errors, coupling of
sequential updates even
looser. Cumulative patch
can be created.

Least flexible, tight coupling of
sequential updates. Cumulative
patch possible but requires
original dataset to be available
exactly as issued including line
breaks.

Comparable to Attribute-level
approach.

Robust

Volume of update delta Low Greater than Attribute
level, but much lower
than whole-dataset
replacement.

Comparable to Attribute level Comparable to Attribute-level High

Tools - availability OEMs must develop. OEMs must develop. System utilities or off-the-shelf,
open-source applications.
‘Wrappers’ must be developed.

Uncertain. Could re-use or adapt
open-source tools or develop
custom application.

No special functionality

Implementation effort Highest Low Low Moderate Low

Application logic Application logic like 8211
format.

Simpler parts of 8211
logic since attributes are
not individually updated.

None for basic implementation.
Error recovery depends on S-
100 requirements.

Simple logic for basic
implementation. Error recovery
depends on S-100 requirements.

Simplest

Sotware re-use Reusable by all data products
conforming to S-100 GML
schema conventions.

Reusable by all data
products conforming to
S-100 GML schema
conventions.

Re-usable by all GML-encoded
data products even if they do not
follow S-100 GML conventions.

Reusable by all data products
conforming to S-100 GML schema
conventions.

Reusable

Update tracking and object
history on end-user system

More complex – application must
generate and track

Simplest - maintain
previous versions of
objects

Most complex – application must
identify feature, generate and
track

Comparable to Attribute-level Application must manage tracking
and history. Difficult except under
very limited circumstances (e.g., if a
‘dataset’ contains only a single
feature)

4

Factor/Approach Attribute-level Object-level Text patch XML patch Whole-dataset

Updating spatial type Update feature spatial attribute
as a whole, or separate spatial
object. Functionality to update an
individual coordinate involves
more complex specification and
application development.

As part of feature, or as
separate spatial object.
Shared geometry
changes may require
updates to all affected
features.

Special treatment
needed for updating
individual coordinate.

Dependent on externalities such
as line breaking. Special
treatment for individual
coordinate not possible in
general.

Update feature spatial attribute as a
whole, or separate spatial object.
Functionality to update an individual
coordinate involves more complex
specification and application
development.

No special treatment needed

Previous version
requirements – producer

Minimal – can track and
generate in production database

Minimal Must have older version(s) of
GML file available for creating
delta.

Minimal Not needed except for product-
specific tracking and history
purposes.

Previous version
requirements – end-user

Minimal (e.g. object being
updated must exist, etc.)

Minimal Must have older version of GML
file available and this must
match the file on the producer
end.

Minimal Not needed except for product- or
application-specific tracking and
history needs, if any.

Transfer format Files.

Potentially compatible with WFS
servers or custom S-100 web
services.

Files.

Compatible with WFS
servers or custom S-100
web services.

Files.

Not compatible with Web
services.

Files.

Less compatible with web services
than Attribute-level.

(Same as base dataset, so it
depends on how the product
specification distributes data.)

Data product types Appropriate for data products
built on discrete feature-based or
information types

Appropriate for data
products built on
discrete feature-based
or information types

Appropriate for data products
built on discrete feature-based
or information types

Appropriate for data products built
on discrete feature-based or
information types

Appropriate for imagery data
products, gridded data, weather
images, single-feature-datasets (S-
124 nav warnings)

Compatibility with GML
3.2.1

Possible – but will involve using
metadata or special attribute to
specify operation (insert / delete
/ update).

Yes Yes - ignores GML altogether,
uses physical position in file, or
neighbouring content in dataset.

Yes - update itself will use a non-
GML schema but the method can
reference items in any GML file.

Yes

5

Taking the above analysis into account, this paper recommends that S-100 be extended with the following two
approaches for updating GML datasets:

 Object-level updating for products based on discrete features or information types, subject to two
caveats:

o Products where datasets are very small will generally need only whole-dataset methods; and
o Data or coordinate collections or sequences will need special treatment (e.g., functionality

extensions to locate coordinates by their positions in the sequence) in order to reduce the
average data volume of updates.

 Whole-dataset updating for imagery, gridded data, etc., with the caveat below:
o Methods for updating parts of gridded or pointset data in other formats should be adapted to

GML encodings.

Exceptional circumstances should be considered when making the decision as to which method(s) a data product
uses, for example whether datasets contain only one instance or whether all the instances are associated (e.g., a
feature instance associated to some information type instances), the two approaches are almost equivalent and
the whole-dataset method can be used since it is simpler. Similarly, if it is expected that the majority of the data
within the dataset will normally require updating, then whole dataset replacement (e.g., as a new edition) should
be considered – this last decision would be made by the producer and be independent of the update approach
chosen by the product specification, since product specifications will normally permit re-issues and/or new
editions. For simplicity, product specification authors are generally expected (though not mandated) to pick one
approach for updating datasets, keeping in mind the permissibility of new editions and re-issues.

The remainder of this paper describes the requirements for object-level updating, update structure, and how
product specifications should be written to implement this method.

Detailed description

Update unit

The units of update are ‘whole objects’. A ‘whole object’ for the purposes of this paper is any instance of a
feature, information type, or spatial type in an S-100 dataset. Note that an ‘instance of a spatial type’ means an
independent spatial object that is encoded independently of any feature instance (i.e., not embedded within a
feature instance).

The feature ID attribute for a feature being modified must be the same as the data object being replaced. The
gml:id attribute of the replacement should be the same as that of the original - this is to avoid the need to update
every reference to the object, since references use the gml:id values. The requirement that the gml:id be the
same implies that original and replacement cannot both be simultaneously present in a dataset.

An alternative to requiring re-use of gml:id for modified versions is for the specification for the update process to
require updating of references in other objects in the dataset when the update is loaded. A second alternative is
to define internal structure for gml:id values (e.g., ending with “.0”, “.1”, etc. to indicate successive versions). Both
alternatives imply some new constraints on GML application schemas and extensions to their semantics for S-
100 datasets (e.g., the interpretation and use of gml:id values for referencing objects).

Version numbers

To facilitate update management and tracking, a record version field similar to RVER in the ISO 8211 encoding
should be added to feature, information type, and spatial objects; for standardization across all product
specifications, this should be done in the S-100 GML profile.

GML format for update datasets

The format for update datasets is the same as for base datasets. A replacement feature instance,
information type instance, or spatial object will have the same gml:id XML attribute as the instance it
replaces – GML applications can still distinguish between original and replacement by using the update
dataset file name as a prefix to the gml:id value.

In general the data format defined for the base dataset should be re-usable for the update delta. For volume-
reducing methods, there may be some special encoding rules, similar to the ‘empty container’ encoding example
provided later in this section.

6

If the base dataset structure prescribes an ordering of types, the update file structure should follow the same
ordering, for the same reasons. Updated objects of the same type should be ordered according to the order of the
original objects in the dataset to allow a (potentially) faster process for application of the update – this is not
mandatory and production tools may deviate from this recommendation if necessary.

With the ‘whole object’ paradigm and re-use of feature ID and/or gml:id, insertions and modifications do not need
to be explicitly indicated as such, because the update process can in principle test for the existence of an object
(using the re-used feature ID or gml:id) and treat the update as a modification if it is found and an insertion if it is
not found.

The data format for inserted and modified features is the same as the data format for originals, e.g.:

 <imember>
 <S122:Recommendations gml:id="USRCMDTS99">

 <textContent>

 <categoryOfText>full text</categoryOfText>

 <information>

 <headline>Avoidance of whale pods</headline>

 <language>eng</language>

 </information>

 <onlineResource>

 <linkage>http://www.noaa.gov/whale/pods/current/location</linkage>

 <nameOfResource>Whale pod information</nameOfResource>

 <onlineDescription>Whale pod avoidance recommendations</onlineDescription>

 </onlineResource>

 </textContent>

 <appliesInLocation xlink:href="#USSEAARE1"

 xlink:role="http://www.iho.int/S-122/gml/1.0/roles/appliesInLocation"/>

 </S122:Recommendations>

</imember>

Feature and information type instances are deleted without replacement by setting the fixedDateRange.dateEnd
attribute of the instance to the date of deletion, which will usually be the issue date of the update. As a more compact
method, the object container may be nilled with an appropriate nilReason, but this lacks the ‘history’ aspect of
setting the dateEnd attribute to indicate the lifetime of the feature and requires that GML application schemas allow
such empty containers. Examples of both are shown below.

<!-- Method 1 – empty container with nil reason -->

<member xlink:href="USMPAARE5" xlink:title="Delete feature USMPAARE5"

 nilReason="other: deleted" />

<!-- Method 2, update the fixedDateRange.dateEnd attribute -->

<member>

 <S122:MarineProtectedArea gml:id="USMPAARE5">

 <fixedDateRange>

 <dateEnd>

 <date>2017-05-04</date>

 </dateEnd>

 </fixedDateRange>

 etc., etc.

 <S122:MarineProtectedArea>

</member>

Operations must be applied to the most current version of the dataset, i.e., all prior updates must have been applied
in order.

Dataset cancellation (termination)

In order to cancel a dataset, an update dataset file is created for which the edition number must be set to 0. This
message is only used to cancel a base dataset file.

Where a dataset is cancelled and its name is reused at a later date, the issue date must be greater than the issue
date of the cancelled dataset.

When a dataset is cancelled it must be removed from the system.

Dataset structure

The update dataset is fundamentally a dataset that conforms to the same GML schema as the base dataset,
contains feature, information, and spatial object instances being updated (including additions and deletions). The
differences are:

7

 Requirements pertaining to the presence of meta-features do not apply to the update delta dataset.
Meta-features are included in the update delta only if they themselves are being updated. After the
update is applied, any rules concerning meta-features of course apply to the resultant dataset.

 Constraints pertaining to the presence of associated features and information types do not apply to the
update delta dataset. Associated features and information types are included only if they themselves are
being updated. After the update is applied, any constraints applying to associations of course apply to
the resultant dataset.

 Similarly, rules pertaining to the presence of referenced spatial objects or referencing features do not
apply to the update delta dataset , but do apply to the resultant dataset as usual.

Dataset types

GML data products can include the same types of datasets within an exchange set as defined for the ISO 8211
encoding:

Table 2. Dataset types

Dataset Explanations

New dataset (base dataset) Data for an area different (in coverage and/or extent) to existing datasets.

New Edition of a dataset: A re-issue plus new information which has not been previously distributed by Updates. Each
New Edition of a dataset must have the same name as the dataset that it replaces and
should have the same spatial extents.

Update dataset A delta change of the latest edition of a dataset. If there are more than one update dataset,
the subsequent update will be a delta of the base dataset + earlier update datasets.

Re-issue Complete dataset including all the updates applied to the original dataset up to the date of
the reissue. A re-issue does not contain any new information additional to that previously
issued by updates.

Termination Used to terminate dataset. Some product specifications use the term “Cancellation.”

Data coverage

An update dataset must not change the limit of a Data Coverage feature for the base dataset. Where the limit of a
Data Coverage feature for a base dataset is to be changed, this must be done by issuing a new edition of the
dataset.

Dataset loading

Datasets must always be loaded in the order of base dataset first, then update datasets in the correct sequential
order. Systems are not to load updates out of order, for example if update 1-5 are present, then 6 is missing,
update 7 must not be loaded.

Size

Reasonable limits on the size of update datasets may be imposed. E.g., if the base dataset limit is 10MB,
update datasets may be limited to a size of at most 500KB. The nature of the product domain must be
considered when setting size limits, e.g., some domains may have updates that are nearly as large as
base datasets.

File naming

All update dataset files should have an identical name to the base dataset, aside from the separator and
update number sequence.

Reuse of names of cancelled datasets

Where a dataset is cancelled and its name is reused at a later date, the issue date must be greater than the issue
date of the cancelled dataset.

Exchange set contents

An exchange set may contain base dataset files and update dataset files for the same datasets. Under these
circumstances the update dataset files must follow in the correct sequential order from the last update applied to
the base dataset file. Product specifications should describe how systems should behave if the update sequence
is broken.

8

Support file updates

The purpose of issue is indicated in the “purpose” field of the support file discovery metadata. Support files
carrying the “deletion” flag in metadata must be removed from the system. When a feature or information type
pointing to a text, picture or application file is deleted or updated so that it no longer references the file, the
system software must check to see whether any other feature or information type references the same file, before
that file is deleted.

Updates or deletions of a support file may require concurrent updates to feature or information type instance
attributes that depend on the file, e.g., pictorialRepresentation, fileReference and fileLocator attributes.

Validation checks

Validation checks for base datasets should be reviewed and – for the purpose of validating updates – classified
as being applicable to the update in isolation, or to the entire dataset after updating. This classification depends
on whether the condition references other features or information types in the whole dataset which may not have
been included in the update. The validation checks part of the specification must specify which tests are applied
to the base dataset, which to an update in isolation, and which to the updated dataset. Some checks may be
applied in multiple sets of circumstances. A few new tests applying only to updates will need to be added. The
table below contains examples from S-122.

Table 3. Sample validation checks showing applicability to base datasets (B), Updates only (U), and post-
update whole datasets (S)

Check description Check message Check solution Conformity
to:

Apply
to

For each feature object where its
geometry is not COVERED_BY a
DataCoverage

Objects fall outside
the coverage object.

Ensure objects are not outside
of the limits of the cell.

PS 8.9 B, S

For each feature record where the
name is not unique WITHIN the
dataset.

Duplicate FOIDs exist
within the dataset.

Ensure that no duplicate
FOIDs exist.

PS 8.8 B, U, S

If any mandatory attributes are not
Present.

Mandatory attributes
are not encoded

Populate mandatory attributes
(If unknown encode attribute
with empty value).

DCEG 2.4.2 B, U

For each instance of ServiceHours
has more than one instance of
scheduleByDoW, and where an
instance of scheduleByDoW has a
temporal overlap with another
instance of scheduleByDoW.

Schedule overlaps Review service hour intervals
and remove time overlap.

Logical
consistency

B, U

If the update dataset file size is
greater than 500KBytes

The update is larger
than 500 KB in size.

Ensure that the cell is not
larger than 500 KBytes

PS 8.11.3 U

Metadata

Updates to metadata

Base dataset discovery metadata cannot be changed by an update dataset. Other metadata e.g., for support files
might be changed as necessary, but the process and considerations for updating metadata would be separate
from datasets though the possible approaches will probably be similar to those analyzed in this paper and minor
changes to the metadata schemas may be necessary (e.g., XML ID attributes for metadata elements).

Metadata for update datasets

Update dataset metadata is intended to describe information about an update dataset. It facilitates the
management and exploitation of data and is an important requirement for understanding the characteristics of an
update dataset. Whereas dataset metadata is usually fairly comprehensive, metadata for update datasets only
describe the issue date and sequential relation to the base dataset.

The purpose of issue of the dataset is indicated in the “purpose” field of the dataset discovery metadata. In order
to terminate a dataset, an update dataset file is created for which the edition number must be set to 0. This
convention is only used to cancel a base dataset file.

9

Table 4. Discovery metadata for update datasets

Name Cardinality Value Type Remarks

S100_DatasetDiscoveryMetadata Discovery metadata for the update dataset

fileName 1 CharacterString Update Dataset file name

filePath 1 CharacterString Full path from the exchange set root directory

description 1 CharacterString Brief description of the update.

dataProtection 0..1 {1} or {2} CharacterString Value must be same as base dataset.

protectionScheme 0..1 CharacterString Value must be same as base dataset.

digitalSignature 0..1 CharacterString If the base dataset is signed the update should normally also be signed.

digitalSignatureReference 0..1 CharacterString As for base dataset

digitalSignatureValue 0..1 CharacterString As generated for the update

copyright 0..1 MD_LegalConstraints ->MD_RestrictionCode <copyright>
(ISO 19115)

Value must be same as base dataset.

classification 0..1 Class

MD_SecurityConstraints>MD_ClassificationCode (codelist)

Value must be same as base dataset.

purpose 1 {3}, {4} CharacterString 3. Update

4. Terminated (or Cancellation)

specificUsage 1 MD_USAGE>specificUsage (character string)

MD_USAGE>userContactInfo (CI_ResponsibleParty)

brief description of the resource and/or resource series usage. Same as base
dataset.

editionNumber 1 {1} Integer Value must be same as base dataset.

updateNumber 1 CharacterString Update sequence number, must match file name.

updateApplicationDate 1 Date Date of update

issueDate 1 Date Date on which this update was issued.

productSpecification 1 CharacterString Value must be same as base dataset.

producingAgency 1 CI_ResponsibleParty Party responsible for generating the update.

horizontalDatum 1 CharacterString The datum for latitude/longitude. Same as base dataset (usually EPSG:4326)

verticalDatum 1 CharacterString Same as base dataset (usually EPSG:4326)

dataType 1 GML CharacterString

10

dataTypeVersion 1 3.2.1 CharacterString

dataCoverage 1..* S100_DataCoverage Same as base dataset

comment 0..1 CharacterString Any additional Information

layerID 1..* CharacterString Value must be same as base dataset. E.g., S-101

Table 5. Metadata for updated support files

Name Cardinality Value Type Remarks

S100_SupportFileDiscoveryMetadata

fileName 1 CharacterString

fileLocation 1 CharacterString Path relative to the root directory of the exchange set. The location of the file
after the exchange set is unpacked into directory <EXCH_ROOT> will be

<EXCH_ROOT>/<filePath>/<filename>

purpose 1 S100_SupportFilePurpose new, replacement, or deletion

editionNumber 1 CharacterString

issueDate 1 Date

productSpecification 1 S100_ProductSpecification May differ from original, but must be consistent with the type of support file (as
updated). E.g., it is possible to change from JPG to TIFF (assuming both are
allowed in the product specification).

dataType 1 S100_SupportFileFormat May differ from original, but must be consistent with the reference to the
support file (as updated). Any pointers to locations within text support files
must be updated simultaneously. E.g., a support file referenced by attribute
pictorialRepresentation must be a graphic file of a type allowed by the product
specification.

otherDataTypeDescription 0..1 CharacterString

dataTypeVersion 1 CharacterString

comment 0..1 CharacterString

digitalSignatureReference 0..1 CharacterString Reference to the appropriate digital signature algorithm

digitalSignatureValue 0..1 CharacterString

11

Conclusions

The possible approaches to defining an update format for GML datasets has been analysed. The most
promising are the ‘whole-object’ and ‘XML patch’ approaches. The ‘whole-object’ approach offers a
reasonable compromise between the various factors and should be evaluated in S-100 test-beds. The
‘XML patch’ approach is another candidate but may need more development of format details and
update processing before it can be implemented.

Recommendations

 Evaluate the most promising approaches to an update format for GML in S-100 testbeds, especially the
‘whole-object’ approach. The ‘XML patch’ approach may be considered as another candidate.

 Develop rules or guidelines for update format, processing, and management for eventual incorporation
into S-100 or supporting guidance for authors of product specifications and implementers.

Action Requested of S-100 WG TSM

The TSM is invited to:

a. Discuss this paper.

b. Select one or more approaches for further investigations in test-beds and more detailed
development specifications.

c. Recommend the selected approach(es) for consideration by the full S-100 working group
and testing in S-100 testbeds.

