
 1

SNPWG15 –12

15th SNPWG MEETING
Helsinki, Finland, 12-16 November, 2012

Inclusion of a Temporal Model within S-100

Submitted by UK/Jeppesen

Introduction

Some time ago the UK raised concerns about the ability of the date types in S-100 to
support the periodic date structure used in S-57. Following this Jeppesen submitted a
paper to the Data Classification and Encoding Guide (DCEG) sub group prior to
TSMAD 24 which formalised this discussion and presented two options;

1. Amend S-100 and S-101 to permit use of earlier editions of ISO 8601 and
continue to use the S-57 formats; or,

2. Confirm that S-100 representations of dates and times must conform to ISO
8601:2004, and revise the dates/times model of S-101 to use a different
representation for recurring intervals. Defining new attributes for “number of
recurrences” and “duration” as in ISO 8601:2004 should work, but will make
the model a little more complex.

This paper proposes a way forward based on option 2, a draft is included at annexe
A. This ensures alignment with modern standards; it requires that a short profile of
ISO 19108 be added to S-100 further detailing how date and time information should
be used within S-100 Product Specifications. This profile will ensure consistent and
clear use of temporal information between S-100 based products and support
improved information interchange.

Conclusion

S-100 currently does not support truncated date time types. The proposed temporal
model will allow S-100 to support these types and S-10x products use these as
required within their data models. This model has not yet been considered by
TSMAD but as a stakeholder SNPWG’s views are welcomed at this time as input to
this work.

Action required of SNPWG

 To note the contents of the proposed temporal model

 To provide any comments on the proposed model in particular in respect of
how it meets the requirements of SNPWG

 2

Annexe A

3-6.4.4 S-100 Temporal Information

References

ISO 19108:2005
ISO 8601:2004

3-6.4.4.1 Introduction

ISO 19108 provides the concepts needed to describe the temporal characteristics of
geographic information as they are abstracted from the real world. Temporal
characteristics of geographic information include attributes, associations and
metadata elements that take a value in the temporal domain. Time provides a
fundamental element within many geographic datasets. Consistent modelling of
temporal information is required to ensure consistent interaction between different S-
100 products and across domains.

3-6.4.4.2 Temporal Schema

The temporal schema consists of temporal objects and temporal reference system.
Temporal objects defines temporal geometric and topological objects that shall be
used as values for the temporal characteristics of features and data sets. The
temporal position of an object shall be specified in relation to a temporal reference
system. S-100 products shall use the Gregorian Calendar and 24-hour local or
Coordinated Universal Time (UTC) for information interchange as specified in ISO
8601. Where local time is used the offset from UTC must be provided see Value
Types.

Figure 2 – Temporal primitives

 3

3-6.4.4.3 TM Objects

S-100 constrains TM_Objects to only TM_Object, TM_Primitive and TM_Geometric
Primitive. TM_Object (see Figure 2) is an abstract class that has two subclasses.
TM_Primitive is an abstract class that represents a non-decomposed element of
geometry or topology of time. TM_GeometricPrimitive provides information about
temporal position.

3-6.4.4.4 Temporal Geometric Primitives

The two geometric primitives in the temporal dimension are the instant and the
period. These primitives are defined analytically in the case of time measured on an
interval scale, and analogically in the case of time measured on an ordinal scale.
TM_GeometricPrimitive is an abstract class with two subclasses, TM_Instant
represents an instant and TM_Period represents a period (see Figure 3).

3-6.4.4.5 S100_TM_Instant

An instant is a zero-dimensional geometric primitive that represents position in time.
It is equivalent to a point in space. In practice, an instant is an interval whose
duration is less than the resolution of the time scale.
Attributes:

TM_Instant has one attribute

position:TM_TemporalPosition shall provide the position of this TM_Instant. An
instance of TM_Instant is an identifiable object, while an instance of
TM_TemporalPosition is a data value.

3-6.4.4.6 S100_TM_Period

 4

The period is a one-dimensional geometric primitive that represents extent in time.
The period is equivalent to a curve in space. Like a curve, it is an open interval
bounded by beginning and end points (instants), and has length (duration). Its
location in time is described by the temporal positions of the instants at which it
begins and ends; its duration equals the temporal distance between those two
temporal positions. Since it is impossible to measure duration on an ordinal scale, an
instant cannot be distinguished from a period on this basis. In practice, the time at
which a single event occurs can be considered an instant when time is measured.

a) position:TM_TemporalPosition shall provide the position of this TM_Instant. An
instance of TM_Instant is an identifiable object, while an instance of
TM_TemporalPosition is a data value. A series of consecutive events must occupy
an interval of time, which is a period. The term period is commonly applied to
sequences of events that have distinctive characteristics in common.

Associations:
a) Beginning links the TM_Period to the TM_Instant at which it starts.
b) Ending links the TM_Period to the TM_Instant at which it ends.

Constraints:
a) self.begin.position self.end.position states that the temporal position of the
beginning of the period must be less than (i.e. earlier than) the temporal position of
the end of the period.

3-6.4.4.7 S100_TM_Position

TM_Position is a union class that consists of one of the data types listed as its
attributes. Date, Time, and DateTime are basic data types defined in ISO/TS 19103.
They comply with ISO 8601 encoding of dates and times as character strings. These
data types may be used for describing temporal positions referenced to the
Gregorian calendar and UTC. TM_TemporalPosition and its subtypes shall be used
for describing temporal positions referenced to other temporal reference systems.
The data types defined in 5.4.4 specify numeric values for dates and times. They
may be used for temporal positions referenced to any calendar or clock, including the
Gregorian calendar and UTC.

3-6.4.4.8 S100_TM_TruncatedDateTimeType

S-100 extends ISO 19108 to include a specific data type for truncated date time. This
ensures that partial dates can be used for recurring periods. This type is realised as a
complex attributes with 4 optional elements providing the elements of the truncated
dateTime.

 5

3-6.4.4.9 S-100 Temporal Model

Figure 4 - S-100 Temporal Information Model – Items in green are indicative
examples only.

 6

3-6.4.4.10 Value types

Table 1. Value types

Date A date gives values for year, month and day according to the Gregorian
Calendar. Character encoding of a date is a string which shall follow the
calendar date format (complete representation, basic format) for date
specified by ISO 8601.
EXAMPLE 19980918 (YYYYMMDD)

Time A time is given by an hour, minute and second or fractions thereof.
Character encoding of a time is a string that follows any of the time of day
formats defined in ISO 8601. Product specifications shall specify which
formats are allowed for their domains, and where appropriate, the decimal
separator and number of digits in the decimal fraction.
Time zone according to UTC is optional.
EXAMPLES:
a) 183059 or 183059+0100 or 183059Z (complete representation, basic
format)
b) 18:30:59 or 18:30:59+0100 or 18:30:59Z (complete representation,
extended format)
c) 1830 or 1830+0100 or 1830Z (reduced accuracy with 2 digits omitted,
basic format)
d) 18:30 or 18:30+0100 or 18:30Z (reduced accuracy with 2 digits
omitted,, extended format)
e) 18 or 18Z (reduced accuracy with 4 digits omitted, basic format –
extended format is not applicable when 4 digits are omitted).
f) 183059.50, 1830.7, 18.50 (decimal representations, basic format)
g) 18:30:59.50, 18:30.7 (decimal representations, extended format)
Note that the time designated by (c) and (d) is different from the time
designated by (a) and (b) and the time designated by (e) is different from
both.
The complete representation of the time of 27 minutes and 46 seconds
past 15 hours locally in Geneva (in winter one hour ahead of UTC), and in
New York (in winter five hours behind UTC), together with the indication of
the difference between the time scale of local time and UTC, are used as
examples.
Geneva: 152746+0100

New York: 152746-0500

DateTime A DateTime is a combination of a date and a time type. Character
encoding of a DateTime shall follow ISO 8601 (see above).
EXAMPLE: 19850412T101530

truncatedDateTimeType A truncatedDateType allows a partial TM Position to be given. To do this
a Complex Attribute carrying the required datetime elements as individual
sub attributes is used. Such a complex attribute must only use the
following simple attributes;
time – Time type (see above)
day – integer between 1-31
month – integer between 1-12
year – integer between 0000 - 9999

3-6.4.4.11 Interpretation of interval start and end

The start and end instants of periods shall be included in the period unless a product
specification specifies a different interpretation. This is based on ISO 8601:2004 §
2.1.3 which defines time interval as “the part of the time axis delimited by two
instants” and provides that “A time interval comprises all instants between the two
limiting instants and, unless otherwise stated, the two limiting instants themselves”.

EXAMPLES: Applying this to encoding intervals using the reduced accuracy

representation or the truncatedDateTimeType, results in the interpretations in Table

 7

2. The table also indicates how the special case of leap years can be

handled.

Table 2. Examples of periods

<truncatedDateTimeType>
periodStart

month=01 000000 on January 1
through 240000 on the
29th day of February in
leap years and the 28th

day of February in non-
leap years

year, day, and time
not encoded

<truncatedDateTimeType>
periodEnd

month=02

year, day, and time
not encoded

<truncatedDateTimeType>
periodStart

month=01
day=01

000000 on January 1
through 240000 on the
28th day of February each
year

year and time not
encoded

<truncatedDateTimeType>
periodEnd

month=02
day=28

year and time not
encoded

<S100_TM_DateAttributeType>
dateStart

dateStart=20120105 000000 on January 5,
2012 through 240000 on
June 18, 2012 <S100_TM_DateAttributeType>

dateEnd
dateEnd=20120618

3-6.4.4.12 Use of specific types for truncated Date Time

Encodings may utilise specific types as supported by that encoding in order to
incorporate truncated DateTime values. Where this occurs the encoding must specify
the mapping between the truncatedDateTimeType values and those within the
encoding specific types.

Example;

An XML based encoding may define the following specific simple attribute type.

xs:gMonthDay - --12-17

The S-100 truncatedDateTime values are --(month)-(day)

Comment [r1]: An alternative approach

would be to incorporate such specific types

within the model itself - discuss

 8

Annex B. (Informative) Example: Modeling of Schedules

In the real world more complex time related scenarios exist than instants and
periods. Typically a bridge may open at set times on different days of the week
running to a different schedule in different seasons. A single complex attribute is
used with a separate optional complex defining when the schedule applies. This
allows for different schedules within different seasons. A separate complex attribute
daily schedule defines the time range for each day and can be directly attached to
the schedule or via a complex defining the day on which a schedule applies.

More complex schedules may require different solutions. For example, modelling
holidays and special working hours can get complicated. Some considerations are:

 Some holidays occur on different days in the Gregorian calendar each year.
The relevant calendrical calculations are often complicated and agencies who
provide the dates of such holidays in the Gregorian calendar will probably end
up supplying tables of holidays for the next N years.

 Holidays or partial working days are often declared at short notice, sometimes
too short for hydrographic offices to prepare and disseminate an update.

The implication is that holidays are likely to be described in words rather than a date,
and systems will not have the software logic to transform them into dates.

Figure 5 - Schedule example

Comment [r2]: Some names should

be more precise, to avoid forcing

some awkward circumlocutions and

name collisions with other domains:

applies -> scheduleApplies, day ->

scheduleDay. Also, is

workingSchedule intended to match

the SNPWG feature object of the

same name (SNPWG will probably

want to model holidays and multiple

working periods in a day).

Comment [rmm3]: A prescriptive
model of schedules should be
comprehensive so that all domains can
use it or subsets of it. Placing anything
more complicated than the basic model
in XML files would be problematic
because it requires applications to
implement yet another “heavyweight”
logic, namely, code to display the XML
schedule files, in addition to code to
display the basic model of schedules.

Comment [r4]: Figure 5: How

would constraints preventing

duplicate or conflicting information

in workingSchedule/dailySchedule

and

workingSchedule/day/dailySchedule

be defined and encoded? Could this

be done in a way which would

simplify the logic and UI of tools

and applications, and the work of

the human hydrographer who

encodes the data?

Comment [r5]: Common schedules

are 24x7 and M-F, so being able to

make abbreviated encodings of

both would be nice. In its present

form the model can abbreviate only

one. Here again the point is

simplifying the work of the human

encoder and the logic of tool and

applications.

 9

Service

workingSchedule

applies
periodStart month 02

periodEnd month 05

day

dayOfWeek Monday

dailySchedule
timeStart 080000

timeEnd 180000

day

dayOfWeek Tuesday

dailySchedule
timeStart 070000

timeEnd 170000

day

dayOfWeek Wednesday

dailySchedule
timeStart 090000

timeEnd 180000

day

dayOfWeek Thursday

dailySchedule
timeStart 100000

timeEnd 180000

workingSchedule

applies
periodStart month 06

periodEnd month 10

dailySchedule
timeStart 090000

timeEnd 180000

Figure 6 – Schedule worked example

Between February and May the service operates 8-6 Monday, 7-5 Tuesday, 9-6
Wednesday and 10-6 on Thursday. From June to October the service operates 9-6
every day.

