Is Your Bathymetry REAL?

Background

- Most hydrographical survey deliverables are designed for navigational safety
- They can't represent real sea floor topology, because of
 - Shoal biased scheme
 - Referenced on DL (not Mean Sea Level)

Background

- Many other fields need sea floor topology
 - Numerical modeling on ocean states
 - Coastal development
 - Resource management
 - Various coastal GIS applications
- But, depth in nautical chart is not real bathymetry
 Real bathymetry data is too huge to handle

 → We need proper model of bathymetry which trade off real bathymetry and amount of data

Purpose

- KHOA tried to develop new bathymetry dataset, which have 2 major properties
 - Reduce amount of data to 1% level
 - Maintain precision of sea floor topology
- Acquire automation tools for generating new bathymetry dataset from MBES data

- Key idea of KHOA Bathymetry Dataset
 - Variable resolution model which support proportional data density based on complexity of topology
 - High complexity, high data density
 - Low complexity, low data density
- It based on Hierarchical Delaunay Triangulation and support directly sampled data from MBES

Tools

- We developed wizard style automation software, take advantage of ArcGIS Engine
 - Multi resolution terrain dataset based on TIN method
 - Support 2 type of pyramid(binning, z-tolerance)

대 대표수심추출기			37]
파일 입력 대표수심 추출할 파일을 입력하며, 입력 파일의 좌표계를 선택합니다.	성 · 아래와 같으며, 바이닝 간격 및 Threshold, Z-Tolerance, 최종 출력 영합니다.	을 추출 합니다.	법 막바운더리 Polygon을 편집합니다.
수성 주출 파일 파일명 크기 파일선택 EWRent1.bt 167M8 석제	6463404 최소수십(m): -0.72 0.37 최대수십(m): 36.16 34.5504772 바운더리 127.1765179 34.4989752 0.74 🐈 바이닝 Threshold 1 🔭 이 의곽면 생성 소스 클릭파일 -	236463404 최소수실(m): -0.72 h): 0.37 최대수실(m): 36.16 34.5504772 51 바운디리 34.4989752	Editor -
입력파일 좌표계 <mark>정위도 ·</mark> 경위도(Wg/84) ·		SHAPE D:#testsoundg#녹동형#1212240s 파일선택	
다음 > 취소 도움	다음 > 취소 도움말	다음 > 취소 도움말	다음 > 취소 도움말

Optimal binning size

- Various binning size was tested to find out optimal size
 - Optimal binning sizes are different accordantly scale of sea floor complexity

Optimal z-tolerance

- A repeat test was performed to figure out optimal ztolerance
 - Higher z-tolerance make lighter dataset, but danger of information loss is increased

Z-toler						
	Z-tolera	7 tolor				
			Z-tolerance 1.0m			
			i de la companya de la			
		·				

Test

- We generated new dataset for 4 sample site
 - Reduce data amount to 0.16 ~ 0.88% of original data count
 - Terrain accuracy is preserved

Test site	Input data properties			running options		results			
	average distance between points(m)	original point count	max depth(m)	min depth(m)	binning size(m)	z- tolerance (m)	running time	KBM point count	extract rate
Nokdong	0.37	236,463,404	36.2	-0.7	0.74	0.3	3h 51m	1,880,271	0.79%
Narodo	0.26	310,754,630	25.7	-0.9	0.52	0.2	4h 02m	499,053	0.16%
Hongdo	0.77	151,739,562	91.0	-0.7	1.54	0.5	2h 35m	1,336,246	0.88%
Jeju	0.60	366,742,743	91.4	0.3	1.2	0.2	3h 56m	1,736,139	0.47%

Test

• Preserved terrain accuracy

- KHOA Bathymetry Dataset is very good at expressing details of terrain
- Smooth sheet data could not express small objects on sea bed
- Data count of both data are almost equal number

KHOA Bathymetry dataset positions

Smooth sheet data positions

Test

Shaded image of original data

Contour of original data

Shaded image of KHOA Bathymetry dataset

Contour of KHOA Bathymetry dataset

Expected applications

- Depth data for ocean numerical modeling
 - Calculate correct volume of water mass
- Coastal engineering
 - Assessment of aggregate resource
 - Estimate dredging volume
 - Provide basic information for making decision on coastal management
- Marine GIS
 - Data fusion of land and ocean DEM
 - Simplification of bathymetric data sets and integration with other data sources

Conclusions

- Most hydrographical survey deliverables are designed for navigational safety, but many other fields need real sea floor topology rather than safety depth
- Real bathymetry data is too huge to handle
- KHOA has developed new bathymetry dataset and test it for 4 site
 - Reduce data amount to 0.16 ~ 0.88% of original data count
 - Terrain accuracy is preserved
- KHOA Bathymetry Dataset will provide accurate and light-weighted bathymetry information to nonnavigational purpose users

Questions?