TideBed : Tide datum relationship database of Korea

What is Tide Bed?

- Tide Bed is a database of relationships among Mean Sea Level(MSL), Datum Level(DL) and Mean Sea Level at Incheon bay(IMSL) which is vertical datum of Korean geodetic datum.
- Tide Bed will be constructed as fine cell structure(10m mesh).
- Every cell contains
 - Separation between MSL and DL
 - Separation between MSL and IMSL
 - Harmonic constants of 4 major constituents
- Geo-spartial extends of Database
 - Inner part of Korea Exclusive Economic Zone

Why is Tide Bed needed?

- Hydrographical survey data need tide calibration
 - For consistency of calibration work, preprogrammed database of tidal corrector is needed
- Most of bathymetric survey data was compiled as Nautical Chart, but it can not reflect real topological shape and water volume.
 - Chart Datum Level = Approximation Lower Low Water
 - More shallow data are given priority in chart data selection(shoal biased)
- Correct ocean topology data is needed in various fields like as Ocean numerical modeling, coastal development, resource assessment and legal boundary delimitation.

Relationships among three tidal datum

- In coastal area, the relationships among three tidal datum can be made out by
 - Leveling between land BM and Tidal BM
 - Intensive analysis on observed tide data

Cell contents

Cell Attributes	Dimensions	Туре	Size(Byte)
M ₂ Amplitude	Χ, Υ	float	4
M ₂ Phase	Χ, Υ	float	4
S ₂ Amplitude	Χ, Υ	float	4
S ₂ Phase	Χ, Υ	float	4
K1 Amplitude	Χ, Υ	float	4
K ₁ Phase	Χ, Υ	float	4
O ₁ Amplitude	Χ, Υ	float	4
O_1 Phase	Χ, Υ	float	4
Spring Range	Χ, Υ	float	4
Mean High Tide Interval of M_2	Χ, Υ	float	4
MSL-DL offset	Χ, Υ	float	4
MSL-IMSL offset	Χ, Υ	float	4
Total	l		48
* Database was compiled as NetCDF format			

Data processing for DB generation

• Controlled point

- We use 407 points of tidal observed data from observed data analysis, but they was not sufficient to reconstruct detail tidal characteristic of coastal area.
- Add 1190 controlled points as input data for more accurate and precise distribution of tidal characteristics
- Optimal interpolation with model data
 - For more realistic tidal corrector distribution on outer sea, Optimal interpolation was performed.
 - NAO.99jb was used as backgound fields.

Data processing for DB generation(cont'd)

- Create separations among three tidal datum
 - Coastal area
 - MSL-DL separation calculated as sum of amplitude of 4 major tidal constituents.
 - MSL-IMSL separation estimated from results of connection survey between Land BM and Tidal BM.
 - Whole area
 - MSL-DL separation data of whole area can be made through optimal interpolation of observed(coastal) data and simulated data from numerical modeling
 - We assumed that MSL-IMSL separation of offshore would be zero, MSL-IMSL separation data made through spatial interpolation method

Acquired charts

• We obtain co-tidal chart as below

Incheon ongtaek **KOREA** Gunsan hisa 35.00 34.00 Range (cm) 800 750 700 650 600 550 500 450 400 350 300 250 200 Spring Range (cm) 150 100 MHWI (Incheon = o)

Future improvements

- Accuracy and uncertainty assessments
- Add new relationship between MSL and Ellipsoid
- Construct tidal harmonic constants database, consist on major 16 ~ 20 constituents
- Develop downloadable software or web-based tools for interacting with Tide Bed database

Questions?