
Part 12 - S-100 Maintenance Procedures

-1-

S-100 Maintenance - Change Proposal Form
TSMAD27-4.3.10A

Organisation Jeppesen Date 2013-11-01

Contact Eivind.Mong@jeppesen.com Email Eivind.Mong@jeppesen.com

Change Proposal Type Select only one option

1.Clarification 2.Correction 3.Extension

 Y

Location Identify all change proposal locations

Note: (new) means numbering as in the accompanying redline document.

S-100 Version No. Part No. Section No. Proposal Summary

1.0.0

1 3 Add the standards for dictionaries/thesauri to
the references

 1 4.7 Insert new clause 4.7 on CodeList types

 1 4.8.1 (4.10.1 in
TSMAD26 redline
of edition 2.0.0)

Add item (f) describing UML model of
codelists

 2a 4.2 Add “codelist” to the attribute data types

 3 5.2.8 Add clarification to S100_GF_AttributeType
for domains of codelist type

 3 5.3 Add attribute type for codelists

 5-A Figure A-1 Add codelist to the enumeration of attribute
types

 New Annex

11a (Informative)

New Annex Add the Guidelines for Product Specification
Authors annex in the accompanying paper as
an informative annex

Change Proposal

1-3 Normative References: Add
ISO 19136: Geographic Information – Geography Markup Language
OGC 10-129r1: Geographic Information – Geography Markup Language (GML) – Extended schemas
and encoding rules
SKOS: SKOS – Simple Knowledge Organization System – Reference. W3C Recommendation, 2009.
http://www.w3.org/TR/2009/REC-skos-reference-20090818/.
ISO 25964-1: Information and documentation — Thesauri and interoperability with other vocabularies —
Part 1: Thesauri for information retrieval.
ISO 25964-2: Information and documentation — Thesauri and interoperability with other
vocabularies — Part 2: Interoperability with other vocabularies

(Insert) 1-4.7 Codelist types

CodeList types may be used for open enumerations whose membership cannot be known at the level of
the product specification, for reuse of information model fragments, or for more efficient catalogue
management. Specifically, they may be used:

a) for enumerations whose members are not all knowable at the level of the application schema;

Part 12 - S-100 Maintenance Procedures

-2-

b) for lists defined or controlled by external authorities;

c) for lists common to multiple S-100 domains;

d) if the set of allowed values needs to be extended without a major revision of the data
specification;

e) long lists of potential values which would clutter or bloat feature catalogues.

For example, ISO 19115 (Metadata) defines several codelists, because it needs to define enumerated
types whose membership is determined by domain and circumstances (e.g., distribution media).

A codelist type declaration defines either:

 a list of valid key-value combinations (i.e., code-value mappings) with a provision for allowing
user communities to provide allowed values in a specified format; or,

 a dictionary (vocabulary) of key-value combinations in a known format, identifiable by a
Uniform Resource Identifier and which can be located by the application of standard modern
techniques for locating resources.

Code lists are modelled as classes that are stereotyped as <<Codelist>>. Code lists of the first form
must list the known literals as attributes. In the second form, no attributes are listed. A CodeList
classifier must have tagged values which define its representation and extensibility, and may have a
tagged value which hints at the anticipated encoding. Figure 1 shows two examples of codelists – the
Languages codelist is an example of a codelist modelled as an extensible enumeration (indicated by the
tagged values asDictionary=false and extensible=true) and the Countries codelist is an example of a
codelist modelled by an external dictionary (indicated by tagged value asDictionary=true) whose
location is given by its vocabulary tagged value.

 Figure 1. Codelists

Implementations (and specific encodings) are allowed to depart from encoding hints. Different
implementations may use different encoding schemes (and translation tables to other encoding
schemes). For example preparation of a feature catalogue for an ISO 8211 encoding may transform a
dictionary into an XML fragment which is merged into (or Xinclude’d in) the XML feature catalogue
(obviously an additional procedure is needed for maintenance). This allows XML/GML encodings to use
the dictionary while still allowing other encodings to function within their limitations.

The tagged values for S100 CodeLists are described in the table below.

Table 1. Tagged values for codelists

Model Tag

asDictionary vocabulary extensible encodingHint

Part 12 - S-100 Maintenance Procedures

-3-

enumeration
with pattern

false (nil) true: additional
values permitted
(default)

false: additional
values not
permitted

enum: encode as ordinary
enumeration (must have
extensible=false)

open: encode as union of list and
pattern ―other: \w{2,}" (default)

+ others as defined in product
specifications

dictionary true (URI) true: additional
values permitted

false: additional
values not
permitted
(default)

enum: encode as ordinary
enumeration (must have
extensible=false)

resource: encode as URI pointing
to item in vocabulary (default)

open: encode as URI identifying
an item in either the specified
vocabulary or another vocabulary

+ others as defined in product
specification, or empty

1-4.8.1 (1-4.10.1 in TSMAD 26 draft of Edition 2.0.0) Use of standard UML stereotypes for
class/classifier

(Add) f) <<CodeList>> A data type whose instances form a list of named literals, some or all of whose
members may not be known. The CodeList name is declared in the application schema. The list
members may be described by either (i) a list of codes and corresponding literals augmented with a
pattern allowing additional values conforming to a certain format, or (ii) a pointer to a resource
consisting of a list of code/literal mappings. The resource is called a vocabulary or dictionary. Tagged
values attached to the CodeList declaration indicate which form is used and the location of the
resource (generally as a URI). CodeLists should be used only when an enumeration is either unusable
or inefficient (e.g., if the full list of values is not known to the specification authors or the list of allowed
values is long, volatile, controlled by another authority, and/or shared by multiple domains).

2a-4.2: Add ―codelist‖ to the attribute data types.

3-5.2.8 S100_GF_AttributeType: add sentence explaining that for a codelist the domain of values may
be given by a URI identifying a ―vocabulary‖.

3-5.3: Add S100_CodeListAttributeType to the UML diagram in Figure 3-2 – Attributes.

5-A Figure A-1: Add codelist to the enumeration in S100_CD_AttributeDataType

New Annex 11c (Informative) – Guidance on Codelists: Add Annex A of the accompanying paper
―Codelists‖ as an informative annex.

Change Proposal Justification
Please provide a suitable explanation for the change and where applicable supporting
documentation.

Codelists are a method of representing open, flexible enumerations. They are suitable for modelling lists
of values not all of which are knowable when the application schema is developed, or when the list may
need to be extended without a major revision of product specifications. They are also suitable for long
lists of values which are shared by multiple product specifications and/or maintained by an external
authority.

An accompanying TSMAD 27 paper contains details on the proposal.

