Satellite Derived Bathymetry

MACHC14 - Satellite Derived Bathymetry

MACHC4

N

Over 100 SDCs supported by field surveys

Performances Feedback

- + Horizontal precision:
 - 10m average, in the case of spatiotriangulated contiguous blocks without GPS control points
 - 10m average, in the case of an orthorectified image with GPS control points
 - 2m locally, with HR images and dense network of control points
- + Vertical precision:
 - (with properly calibrated Lyzenga model)
 - Up to 30% depth uncertainty in the [0-5m] layer
 - 10% depth average uncertainty in the [5-20m] layer

9-13 June, 2013

MACHC14

OB

Performances Shortcomings

- + Bottom investigation remains uncomplete:
 - Features not always detected and/or difficult to determine (bottom roughness badly replicated by the model)
- Depth of penetration: 1x Secchi depth
 20m on average, exceptionally 30m
- + Processing time:
 - Manual checks of automated processes and data validation are painstaking and still require an hydrographic surveyor's supervision

OB

- + Ground control (Control points and control survey lines):
 - Indispensable an relatively costly

Average performances of sensors

+ In very shallow waters < 10m</p>

	Acoustic (EM 2040)	Lidar (CZMIL)	Satellite (Pleïades XS)
Spatial XY resolution (m)	0.2	0.5	2
Spatial Z resolution (m)	0.1	0.2	1
Density (measures /m ²)	25	4	0.25
Total Horizontal Uncertainty (m)	0.5	1	10
Total Vertical Uncertainty (m)	0.2	0.3	30% to 10% of depth

Rough assessment – non contractual figures

Costs & Effective performances

+ In very shallow waters < 10m

	Acoustic (EM 2040)	Lidar (CZMIL)	Satellite (Pleïades XS)
Survey (€ per sq. km)	2,500	1,500	5
Survey (sq. km per hour)	0.14	13	Archive
Duration (hour per sq. km)	7	0.08	0
Processing (hour per sq. km)	21	4	3
Total Cost (€ per sq. km)	3,340	1,660	125
Total Duration (hour per sq. km)	28	4	3

9-13 June, 2013

MACHC14

Rough estimates – non contractual figures

What improvements ?

- Further development and implementation of production tools, to improve performances and to limit *in-situ* costly surveys:
 - + Test inversion methods in production, against Lyzenga's . Benchmarking and implementation if proven better.
 - + Test & implement new sensors and processes.

9-13 June, 2013

MACHC14

Og

The conceptual physics-based model for shallow waters

Satellite Derived Bathymetry

The physics-based Inversion Method

- + May work without any in-situ data
- + Is based on physical geometry and radiative transfer theory
- + A set of equations predict what the sensor receives - they are 'inverted' to estimate depth from sensor data:

$$\begin{aligned} r_{\rm rs}(\lambda) &\approx r_{\rm rs}^{\rm dp}(\lambda) \left(1 - \exp\left\{ -\left[\frac{1}{\cos\theta_{\rm w}} + \frac{D_{\rm u}^{\rm C}(\lambda)}{\cos\theta}\right] \kappa(\lambda) H\right) \right) \\ &+ \frac{1}{\pi} \rho(\lambda) \exp\left\{ -\left[\frac{1}{\cos\theta_{\rm w}} + \frac{D_{\rm u}^{\rm B}(\lambda)}{\cos\theta}\right] \kappa(\lambda) H \right\} \end{aligned}$$

Sensor receives this

Hedley & al. 2011, Remote Sensing of Environment 120, 145-155

Satellite Derived Bathymetry

OB

How should we concentrate efforts ?

Global assessment of areas where SDB is applicable and cost-efficient

To manage data uncertainties from sensors to charts (errors budget) (especially when there is no in-situ data)

Taking into account acquisition delays (it can take time to get fresh and good enough images ...)

Og

MACHC14

9-13 June, 2013

How should we concentrate efforts ?

- + To identify environmental limits:
 - + Water surface state, clouds and turbidity are still challenges for image processing.

Somewhere, in French Guyana

9-13 June. 2013

MACHC14